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PREFACE

This book is inspired by The Structure of Proof: With Logic and Set Theory published
by Prentice Hall in 2002. My motivation for that text was to use symbolic logic as a
means by which to learn how to write proofs. The purpose of this book is to present
mathematical logic and set theory to prepare the reader for more advanced courses that
deal with these subjects either directly or indirectly. It does this by starting with propo-
sitional logic and first-order logic with sections dedicated to the connection of logic
to proof-writing. Building on this, set theory is developed using first-order formulas.
Set operations, subsets, equality, and families of sets are covered followed by relations
and functions. The axioms of set theory are introduced next, and then sets of num-
bers are constructed. Finite numbers, such as the natural numbers and the integers, are
defined first. All of these numbers are actually sets constructed so that they resemble
the numbers that are their namesakes. Then, the infinite ordinal and cardinal numbers
appear. The last chapter of the book is an introduction to model theory, which includes
applications to abstract algebra and the proofs of the completeness and compactness
theorems. The text concludes with a note on Gödel’s incompleteness theorems.

MICHAEL L. O’LEARY

Glen Ellyn, Illinois

July 2015
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CHAPTER 1

PROPOSITIONAL LOGIC

1.1 SYMBOLIC LOGIC

Let us definemathematics as the study of number and space. Although representations
can be found in the physical world, the subject of mathematics is not physical. Instead,
mathematical objects are abstract, such as equations in algebra or points and lines in
geometry. They are found only as ideas in minds. These ideas sometimes lead to the
discovery of other ideas that do not manifest themselves in the physical world as when
studying various magnitudes of infinity, while others lead to the creation of tangible
objects, such as bridges or computers.

Let us define logic as the study of arguments. In other words, logic attempts to codify
what counts as legitimate means by which to draw conclusions from given information.
There are many variations of logic, but they all can be classified into one of two types.
There is inductive logic in which if the argument is good, the conclusion will probably
follow from the hypotheses. This is because inductive logic rests on evidence and
observation, so there can never be complete certainty whether the conclusions reached
do indeed describe the universe. An example of an inductive argument is:

A First Course in Mathematical Logic and Set Theory, First Edition. Michael L. O’Leary.
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2 Chapter 1 PROPOSITIONAL LOGIC

A red sky in the morning means that a storm is coming.
We see a red sky this morning.
Therefore, there will be a storm today.

Whether this is a trust-worthy argument or not rests on the strength of the predictive
abilities of a red sky, and we know about that by past observations. Thus, the argument
is inductive. The other type is deductive logic. Here the methods yield conclusions
with complete certainty, provided, of course, that no errors in reasoning were made.
An example of a deductive argument is:

All geometers are mathematicians.
Euclid is a geometer.
Therefore, Euclid is a mathematician.

Whether Euclid refers to the author of the Elements or is Mr. Euclid from down the
street is irrelevant. The argument works because the third sentence must follow from
the first two.

As anyone who has solved an equation or written a proof can attest, deductive logic
is the realm of the mathematician. This is not to say that there are not other aspects to
the discovery of mathematical results, such as drawing conclusions from diagrams or
patterns, using computational software, or simply making a lucky guess, but it is to say
that to accept a mathematical statement requires the production of a deductive proof of
that statement. For example, in elementary algebra, we know that given

2x − 5 = 11,

we can conclude
2x = 6

and then
x = 3.

As each of the steps is legal, it is certain that the conclusion of x = 3 follows. In
geometry, we can write a two-column proof that shows that

∠B ≅ ∠D

is guaranteed to follow from
ABCD is a parallelogram.

The study of these types of arguments, those that are deductive and mathematical in
content, is calledmathematical logic.

Propositions

To study arguments, one must first study sentences because they are the main parts of
arguments. However, not just any type of sentence will do. Consider

all squares are rectangles.
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The purpose of this sentence is to affirm that things called squares also belong to the
category of things called rectangles. In this case, the assertion made by the sentence is
correct. Also, consider,

circles are not round.

This sentence denies that things called circles have the property of being round. This
denial is incorrect. If a sentence asserts or denies accurately, the sentence is true, but if
it asserts or denies inaccurately, the sentence is false. These are the only truth values
that a sentence can have, and if a sentence has one, it does not have the other. As
arguments intend to draw true conclusions from presumably true given sentences, we
limit the sentences that we study to only those with a truth value. This leads us to our
first definition.

DEFINITION 1.1.1

A sentence that is either true or false is called a proposition.
Not all sentences are propositions, however. Questions, exclamations, commands,

or self-contradictory sentences like the following examples can neither be asserted nor
be denied.

∙ Is mathematics logic?

∙ Hey there!

∙ Do not panic.

∙ This sentence is false.

Sometimes it is unclear whether a sentence identifies a proposition. This can be
due to factors such as imprecision or poor sentence structure. Another example is the
sentence

it is a triangle.

Is this true or false? It is impossible to know because, unlike the other words of the
sentence, the meaning of the word it is not determined. In this sentence, the word it is
acting like a variable as in x + 2 = 5. As the value of x is undetermined, the sentence
x+2 = 5 is neither true nor false. However, if x represents a particular value, we could
make a determination. For example, if x = 3, the sentence is true, and if x = 10, the
sentence is false. Likewise, if it refers to a particular object, then it is a triangle would
identify a proposition.

There are two types of propositions. An atom is a proposition that is not comprised
of other propositions. Examples include

the angle sum of a triangle equals two right angles

and
some quadratic equations have real solutions.
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A proposition that is not an atom but is constructed using other propositions is called
a compound proposition. There are five types.

∙ A negation of a given proposition is a proposition that denies the truth of the
given proposition. For example, the negation of 3 + 8 = 5 is 3 + 8 ≠ 5. In this
case, we say that 3 + 8 = 5 has been negated. Negating the proposition the sine
function is periodic yields the sine function is not periodic.

∙ A conjunction is a proposition formed by combining two propositions (called
conjuncts) with the word and. For example,

the base angles of an isosceles triangle are congruent,
and a square has no right angles

is a conjunction with the base angles of an isosceles triangle are congruent and
a square has no right angles as conjuncts.

∙ A disjunction is a proposition formed by combining two propositions (called
disjuncts) with the word or. The sentence

the base angles of an isosceles triangle are congruent,
or a square has no right angles

is a disjunction.
∙ An implication is a proposition that claims a given proposition (called the an-
tecedent) entails another proposition (called the consequent). Implications are
also known as conditional propositions. For example,

if rectangles have four sides, then squares have for sides (1.1)
is a conditional proposition. Its antecedent is rectangles have four sides, and its
consequent is squares have four sides. This implication can also be written as

rectangles have four sides implies that squares have four sides,

squares have four sides if rectangles have four sides,

rectangles have four sides only if squares have four sides,

and
if rectangles have four sides, squares have four sides.

A conditional proposition can also be written using the words sufficient and nec-
essary. The word sufficientmeans “adequate” or “enough,” and necessarymeans
“needed” or “required.” Thus, the sentence
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rectangles having four sides is sufficient for squares to have four sides

translates (1.1). In other words, the fact that rectangles have four sides is enough
for us to know that squares have four sides. Likewise,

squares having four sides is necessary for rectangles to have four sides

is another translation of the implication because it means that squares must have
four sides because rectangle have four sides. Summing up, the antecedent is
sufficient for the consequent, and the consequent is necessary for the antecedent.

∙ A biconditional proposition is the conjunction of two implications formed by
exchanging their antecedents and consequents. For example,

if rectangles have four sides, then squares have four sides,
and if squares have four sides, then rectangles have four sides.

To remove the redundancy in this sentence, notice that the first conditional can
be written as

rectangles have four sides only if squares have four sides

and the second conditional can be written as
rectangles have four sides if squares have four sides,

resulting in the biconditional being written as
rectangles have four sides if and only if squares have four sides

or the equivalent
rectangles having four sides is necessary and sufficient

for squares to have four sides.

Propositional Forms

As a typical human language has manyways to express the same thought, it is beneficial
to study propositions by translating them into a notation that has a very limited collec-
tion of symbols yet is still able to express the basic logic of the propositions. Once this
is done, rules that determine the truth values of propositions using the new notation can
be developed. Any such system designed to concisely study human reasoning is called
a symbolic logic. Mathematical logic is an example of symbolic logic.

Let p be a finite sequence of characters from a given collection of symbols. Call
the collection an alphabet. Call p a string over the alphabet. The alphabet chosen so
that p can represent a mathematical proposition is called the proposition alphabet and
consists of the following symbols.
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∙ Propositional variables: Uppercase English letters, P ,Q,R,… , or uppercase
English letters with subscripts, Pn, Qn, Rn,… , where n = 0, 1, 2,…

∙ Connectives: ¬, ∧, ∨,→,↔
∙ Grouping symbols: (, ), [, ].

The sequences P ∨Q and P1Q1∧↔ ((( and the empty string, a string with no charac-
ters, are examples of strings over this alphabet, but only certain strings will be chosen
for our study. A string is selected because it is able to represent a proposition. These
strings will be determined by a method called a grammar. The grammar chosen for
our present purposes is given in the next definition. It is given recursively. That is, the
definition is first given for at least one special case, and then the definition is given for
other cases in terms of itself.

DEFINITION 1.1.2

A propositional form is a nonempty string over the proposition alphabet such
that

∙ every propositional variable is a propositional form.
∙ ¬p is a propositional form if p is a propositional form.
∙ (p∧ q), (p∨ q), (p→ q), and (p↔ q) are propositional forms if p and q are
propositional forms.

We follow the convention that parentheses can be replaced with brackets and
outermost parenthesis or brackets can be omitted. As with propositions, a propo-
sitional form that consists only of a propositional variable is an atom. Otherwise,
it is compound.
The strings P , Q1, ¬P , (P1 ∨ P2) ∧ P3, and (P → Q) ∧ (R ↔ ¬P ) are examples of

propositional forms. To prove that the last string is a propositional form, proceed using
Definition 1.1.2 by noting that (P → Q)∧(R↔ ¬P ) is the result of combining P → Q
and R ↔ ¬P with ∧. The propositional form P → Q is from P and Q combined with
→, andR↔ ¬P is fromR and ¬P combined with↔. These and ¬P are propositional
forms because P , Q, and R are propositional variables. This derivation yields the
following parsing tree:

(P → Q) ∧ (R ↔ ¬P)

 P → Q  R ↔ ¬P

P Q ¬PR

P
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The parsing tree yields the formation sequence of the propositional form:
P ,Q,R,¬P , P → Q,R↔ ¬P , (P → Q) ∧ (R ↔ ¬P ).

The sequence is formed by listing each distinct term of the tree starting at the bottom
row and moving upwards.

EXAMPLE 1.1.3

Make the following assignments:
p := R↔ (P ∧Q),
q := (R↔ P ) ∧Q.

The symbol := indicates that an assignment has been made. It means that the
propositional form on the right has been assigned to the lowercase letter on the
left. Using these designations, we can write new propositional forms using p and
q. The propositional form p ∧ q is

[R↔ (P ∧Q)] ∧ [(R ↔ P ) ∧Q]

with the formation sequence,
P ,Q,R, P ∧Q,R↔ P ,

R↔ (P ∧Q), (R↔ P ) ∧Q, [R↔ (P ∧Q)] ∧ [(R ↔ P ) ∧Q],

and ¬q → p is
¬[(R↔ P ) ∧Q]→ [R↔ (P ∧Q)]

with the formation sequence
P ,Q,R,R↔ P , P ∧Q, (R↔ P ) ∧Q,R↔ (P ∧Q),
¬[(R↔ P ) ∧Q],¬[(R↔ P ) ∧Q]→ [R↔ (P ∧Q)].

Interpreting Propositional Forms

Notice that determining whether a string is a propositional form is independent of the
meaning that we give the symbols. However, as we do want these symbols to con-
vey meaning, we assume that the propositional variables represent atoms and set this
interpretation on the connectives:

¬ not
∧ and
∨ or
→ implies
↔ if and only if

Because of this interpretation, name the compound propositional forms as follows:
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¬p negation
p ∧ q conjunction
p ∨ q disjunction
p → q implication
p ↔ q biconditional

EXAMPLE 1.1.4

To see how this works, assign some propositions to some propositional variables:
P := The sine function is not one-to-one.
Q := The square root function is one-to-one.
R := The absolute value function is not onto.

The following symbols represent the indicated propositions:
∙ ¬R
The absolute value function is onto.

∙ ¬P ∨ ¬Q
The sine function is one-to-one, or the square root function is not one-to-
one.

∙ Q → R
If the square root function is one-to-one, the absolute function is not onto.

∙ R↔ P
The absolute value function is not onto if and only if the sine function is not
one-to-one.

∙ P ∧Q
The sine function is not one-to-one, and the square root function is one-to-
one.

∙ ¬P ∧Q
The sine function is one-to-one, and the square root function is one-to-one.

∙ ¬(P ∧Q)
It is not the case that the sine function is not one-to-one and the square root
function is one-to-one.

The proposition
the absolute value function is not onto if and only if

both the sine function is not one-to-one and the square root function is one-to-one

is translated as R↔ (P ∧Q) and
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the absolute value function is not onto if and only if the sine function is not
one-to-one, and the square root function is one-to-one

is translated as (R ↔ P ) ∧ Q. If the parenthesis are removed, the resulting string is
R↔ P ∧Q. It is simpler, but it is not clear how it should be interpreted. To eliminate
its ambiguity, we introduce an order of connectives as in algebra. In this way, certain
strings without parentheses can be read as propositional forms.

DEFINITION 1.1.5 [Order of Connectives]

To interpret a propositional form, read from left to right and use the following
precedence:

∙ propositional forms within parentheses or brackets (innermost first),
∙ negations,
∙ conjunctions,
∙ disjunctions,
∙ conditionals,
∙ biconditionals.

EXAMPLE 1.1.6

To write the propositional form ¬P ∨Q∧R with parentheses, we begin by inter-
preting ¬P . According to the order of operations, the conjunction is next, so we
evaluateQ∧R. This is followed by the disjunction, and we have the propositional
form ¬P ∨ (Q ∧ R).

EXAMPLE 1.1.7

To interpret P ∧ Q ∨ R correctly, use the order of operations. We discover that
it has the same meaning as (P ∧ Q) ∨ R, but how is this distinguished from
P ∧ (Q ∨ R) in English? Parentheses are not appropriate because they are not
used as grouping symbols in sentences. Instead, use either. . . or. Then, using the
assignments from Example 1.1.4, (P ∧Q) ∨ R can be translated as

either the sine function is not one-to-one
and the square root function is one-to-one,
or the absolute value function is not onto.

Notice that either. . . or works as a set of parentheses. We can use this to translate
P ∧ (Q ∨ R):

the sine function is not one-to-one,
and either the square root function is one-to-one

or the absolute value function is not onto.
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Be careful to note that the either-or phrasing is logically inclusive. For instance,
some colleges require their students to take either logic or mathematics. This
choice is meant to be exclusive in the sense that only one is needed for graduation.
However, it is not logically exclusive. A student can take logic to satisfy the
requirement yet still take a math class.

EXAMPLE 1.1.8

Let us interpret ¬(P ∧ Q). We can try translating this as not P and Q, but this
represents ¬P ∧Q according to the order of operations. To handle a propositional
form such as ¬(P ∧ Q), use a phrase like it is not the case or it is false and the
word both. Therefore, ¬(P ∧Q) becomes

it is not the case that both P and Q

or
it is false that both P and Q.

For instance, make the assignments.
P := quadratic equations have at most two real solutions,
Q := the discriminant can be negative.

Then,
quadratic equations do not have at most two real solutions,

and the discriminant can be negative

is a translation of ¬P ∧Q. On the other hand, ¬(P ∧Q) can be
it is not the case that both quadratic equations have at most two real solutions

and the discriminant can be negative.

To interpret ¬P ∧ ¬Q, use neither-nor:
neither do quadratic equations have at most two real solutions,

nor can the discriminant be negative.

Valuations and Truth Tables

Propositions have truth values, but propositional forms do not. This is because every
propositional form represents any one of infinitely many propositions. However, once a
propositional form is identified with a proposition, there should be a process by which
the truth value of the proposition is associated with the propositional form. This is
done with a rule v called a valuation. The input of v is a propositional form, and its
output is T or F. Suppose that P is a propositional variable. If P has been assigned a
proposition,

v(P ) =

{

T if P is true,
F if P is false.
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For example, if P := 2 + 3 = 5, then v(P ) = T, and if P := 2 + 3 = 7, then v(P ) = F.
If P has not been assigned a proposition, then v(P ) can be defined arbitrarily as either
T or F.

The valuation of a compound propositional form is defined using truth tables. Let
p and q be given propositional forms. Along the top row write p and, if needed, q.
Draw a vertical line. To its right identify the desired propositional form consisting
of p, possibly q, and a single connective. In the body of the table, on the left of the
vertical line are all combinations of T and F for p and possibly q. On the right are the
results of applying the connective. Each connective will have its own truth table, and
we want to define these tables so that they match our understanding of the meaning of
each connective.

Since the truth value of the negation of a given proposition is the opposite of that
proposition’s truth value,

p ¬p
T F
F T

This means that v(¬p) = F if v(p) = T and v(¬p) = T if v(p) = F.
The conjunction,

3 + 6 = 9, and all even integers are divisible by two,

is true, but
all integers are rational, and 4 is odd

is false because the second conjunct is false. The disjunction
3 + 7 = 9, or all even integers are divisible by three,

is false since both disjuncts are false. On the other hand,
3 + 7 = 9, or circles are round

is true. This illustrates that
∙ a conjunction is true when both of its conjuncts are true, and false otherwise, and
∙ a disjunction is true when at least one disjunct is true, and false otherwise.

We use these principles to define the truth tables for p ∧ q and p ∨ q:
p q p ∧ q
T T T
T F F
F T F
F F F

p q p ∨ q
T T T
T F T
F T T
F F F

We must remember that only one disjunct needs to be true for the entire disjunction to
be true. For this reason, the logical disjunction is sometimes called an inclusive or.
The propositional form for the exclusive or is

(p ∨ q) ∧ ¬(p ∧ q).
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There are many ways to understand an implication. Sometimes it represents causa-
tion as in

if I score at least 70 on the exam, I will earn a passing grade.

Other times it indicates what would have been the case if some past event had gone
differently as in

if I had not slept late, I would not have missed the meeting.

Study of such conditional propositions is a very involved subject, one that need not
concern us here because in mathematics a simpler understanding of the implication
is enough. Suppose that P and Q are assigned propositions so that P → Q is a true
implication. In mathematics, this means that it is not the case that P is true but Q is
false. This understanding of the conditional is known as material implication. For
example,

if rectangles have four sides, then squares have four sides,
if rectangles have three sides, then squares have four sides,

and
if rectangles have three sides, then squares have three sides

are all true, but
if rectangles have four sides, then squares have three sides

is false. Generalizing, in mathematics, p→ q means ¬(p∧¬q),which has the following
truth table:

p q ¬q p ∧ ¬q ¬(p ∧ ¬q)
T T F F T
T F T T F
F T F F T
F F T F T

The truth table for p→ q is then defined as follows:
p q p→ q
T T T
T F F
F T T
F F T

The truth table for p↔ q is simpler because we understand p↔ q to mean
(p→ q) ∧ (q → p).

The truth table for this propositional form requires five columns:
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p q p→ q q → p (p→ q) ∧ (q → p)
T T T T T
T F F T F
F T T F F
F F T T T

Therefore, define the truth table of p ↔ q as:
p q p↔ q
T T T
T F F
F T F
F F T

This understanding of the biconditional is known asmaterial equivalence.
Using these truth tables, the valuation of an arbitrary propositional form can be

defined.
DEFINITION 1.1.9

Let p and q be propositional forms.

∙ v(¬p) =

{

T if v(p) = F,
F if v(p) = T.

∙ v(p ∧ q) =

{

T if v(p) = T and v(q) = T,
F otherwise.

∙ v(p ∨ q) =

{

F if v(p) = F and v(q) = F,
T otherwise.

∙ v(p→ q) =

{

F if v(p) = T and v(q) = F,
T otherwise.

∙ v(p↔ q) =

{

T if v(p) = v(q),
F otherwise.

EXAMPLE 1.1.10

Consider the propositional form (P ↔ Q) ∨ (R → P ) where
v(P ) = F, v(Q) = T, and v(R) = F.

Then, v(P ↔ Q) = F because v(P ) ≠ v(Q), and v(R → P ) = T because
v(R) = F. Therefore, because v(R→ P ) = T,

v([P ↔ Q] ∨ [R→ P ]) = T,
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We now generalize the definition of a truth table to create truth tables for more com-
plicated propositional forms and then use the tables to find the valuation of a proposi-
tional form given the valuations of its proposition variables.

EXAMPLE 1.1.11

To write the truth table of P → Q∧¬P , identify the column headings by drawing
the parsing tree for this form:

P → Q ∧ ¬P

P Q ∧ ¬P

¬PQ

P

Reading from the bottom, we see that a formation sequence for the propositional
form is

P ,Q,¬P ,Q ∧ ¬P , P → Q ∧ ¬P .

Hence, the truth table for this form is
P Q ¬P Q ∧ ¬P P → Q ∧ ¬P
T T F F F
T F F F F
F T T T T
F F T F T

So, if v(P ) = T and v(Q) = F,
v(P → Q ∧ ¬P ) = F.

That is, any proposition represented by P → Q∧¬P is false when the proposition
assigned to P is true and the proposition assigned to Q is false.
The propositional form in the next example has three propositional variables. To

make clear the truth value pattern that is to the left of the vertical line, note that if there
are n variables, the number of rows is twice the number of rows for n − 1 variables.
To see this, start with one propositional variable. Such a truth table has only two rows.
Add a variable, we obtain four rows. The pattern is obtained by writing the one variable
case twice. For the first time, it has a T written in front of each row. The second copy
has an F in front of each row. To obtain the pattern for three variables, copy the two-
variable pattern twice as in Figure 1.1. To generalize, if there are n variables, there will
be 2n rows.
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P
Two
rows

{

T
F

P Q

−→ Four
rows

⎧

⎪
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T
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T
F
T
F

P Q R

−→ Eight
rows
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⎪

⎪

⎪

⎪
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⎪

⎪
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T
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T
F
F
F
F

T
T
F
F
T
T
F
F

T
F
T
F
T
F
T
F

Figure 1.1 Valuation patterns.

EXAMPLE 1.1.12

Use a truth table to find the truth value of
if the derivative of the sine function is the cosine function

and the second derivative of the sine function is the sine function,
then the third derivative of the sine function is the cosine function.

Define:
P := the derivative of the sine function is the cosine function,
Q := the second derivative of the sine function is the sine function,
R := the third derivative of the sine function is the cosine function.

So P represents a true proposition, butQ andR represent false propositions. The
proposition is represented by

P ∧Q→ R
with truth table:

P Q R P ∧Q P ∧Q→ R
T T T T T
T T F T F
T F T F T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T

Notice that we could have determined the truth value by simply writing one line
from the truth table:

P Q R P ∧Q P ∧Q→ R
T F F F T

We see that v(P ∧ Q → R) = T when v(P ) = T, v(Q) = F, and v(R) = F.
Therefore, the proposition is true.
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EXAMPLE 1.1.13

Both P ∨ ¬P and P → P share an important property. Their columns in their
truth tables are all T. For example, the truth table of P ∨ ¬P is:

P ¬P P ∨ ¬P
T F T
F T T

Therefore, v(P ∨ ¬P ) always equals T, no matter the choice of v.
However, the columns for P ∧ ¬P and P ↔ ¬P are all F. To check the first

one, examine its truth table:
P ¬P P ∧ ¬P
T F F
F T F

This means that v(P ∧ ¬P ) is always F for every valuation v.
Based on the last example, we make the next definition.

DEFINITION 1.1.14

A propositional form p is a tautology if v(p) always equals T for every valuation
v, and p is a contradiction if v(p) always equals F for every v. A propositional
form that is neither a tautology nor a contradiction is called a contingency.

Exercises

1. Identify each sentence as either a proposition or not a proposition. Explain.
(a) Trisect the angle.
(b) Some exponential functions are increasing.
(c) All exponential functions are increasing.
(d) 3 + 8 = 18
(e) 3 + x = 18
(f) Yea, logic!
(g) A triangle is a three-sided polygon.
(h) The function is differentiable.
(i) This proposition is true.
(j) This proposition is not true.

2. Identify the antecedent and the consequent for the given implications.
(a) If the triangle has two congruent sides, it is isosceles.
(b) The polynomial has at most two roots if it is a quadratic.
(c) The data is widely spread only if the standard deviation is large.
(d) The function being constant implies that its derivative is zero.
(e) The system of equations is consistent is necessary for it to have a solution.
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(f) A function is even is sufficient for its square to be even.

3. Give the truth value of each proposition.
(a) A system of equations always has a solution, or a quadratic equation always

has a real solution.
(b) It is false that every polynomial function in one variable is differentiable.
(c) Vertical lines have no slope, and lines through the origin have a positive

y-intercept.
(d) Every integer is even, or every even natural number is an integer.
(e) If every parabola intersects the x-axis, then an ellipse has only one vertex.
(f) The sine function is periodic if and only if every exponential function is al-

ways nonnegative.
(g) It is not the case that 2 + 4 ≠ 6.
(h) The distance between two points is always positive if every line segment is

horizontal.
(i) The derivative of a constant function is zero is necessary for the product rule

to be true.
(j) The derivative of the sine function being cosine is sufficient for the derivative

of the cosine function being sine.
(k) Any real number is negative or positive, but not both.

4. For each sentence, fill in the blank using as many of the words and, or, if, and if and
only if as possible to make the proposition true.

(a) Triangles have three sides 3 + 5 = 6.
(b) 3 + 5 = 6 triangles have three sides.
(c) Ten is the largest integer zero is the smallest integer.
(d) The derivative of a constant function is zero tangent lines for in-

creasing functions have positive slope.

5. Extend Figure 1.1 by writing the typical pattern of Ts and Fs for the truth table of
a propositional form with four propositional variables and then with five propositional
variables.
6. Use a parsing tree to show that the given string is a propositional form.

(a) P ∧Q ∨ R
(b) Q↔ R ∨ ¬Q
(c) P → Q→ R→ S
(d) ¬P ∧Q ∨ (P → Q) ∧ ¬S
(e) (P ∧Q→ Q) ∧ P → Q
(f) ¬¬P ∨ P ∧ S → Q ∨ [R → ¬P → ¬(Q ∨ R)]

7. Define:
P := the angle sum of a triangle is 180,
Q := 3 + 7 = 10,
R := the sine function is continuous.
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Translate the given propositional forms into English.
(a) P ∨Q
(b) P ∧Q
(c) P ∧ ¬Q
(d) Q ∨ ¬R
(e) Q↔ ¬R
(f) R→ Q
(g) P ∨ R→ ¬Q
(h) Q↔ R ∧ ¬Q
(i) ¬(P ∧Q)
(j) ¬(P ∨Q)
(k) P ∨Q ∧ R
(l) (P ∨Q) ∧ R

8. Write the following sentences as propositional forms using the variables P , Q, and
R as defined in Exercise 7.

(a) The sine function is continuous, and 3 + 7 = 10.
(b) The angle sum of a triangle is 180, or the angle sum of a triangle is 180.
(c) If 3 + 7 = 10, then the sine function is not continuous.
(d) The angle sum of a triangle is 180 if and only if the sine function is continu-

ous.
(e) The sine function is continuous if and only if 3 + 7 = 10 implies that the

angle sum of a triangle is not 180.
(f) It is not the case that 3 + 7 ≠ 10.

9. Let v(P ) = T, v(Q) = T, v(R) = F, and v(S) = F. Find the given valuations. (See
Exercise 6.)

(a) P ∧Q ∨ R
(b) Q↔ R ∨ ¬Q
(c) P → Q→ R→ S
(d) ¬P ∧Q ∨ (P → Q) ∧ ¬S
(e) (P ∧Q→ Q) ∧ P → Q
(f) ¬¬P ∨ P ∧ S → Q ∨ [R → ¬P → ¬(Q ∨ R)]

10. Write the truth table for each of the given propositional forms.
(a) ¬P → P
(b) P → ¬Q
(c) (P ∨Q) ∧ ¬(P ∧Q)
(d) (P → Q) ∨ (Q ↔ P )
(e) P ∧ (Q ∨ R)
(f) P ∨Q→ R
(g) P → Q ∧ ¬(R ∨ P )
(h) P → Q↔ R→ S
(i) P ∨ (¬Q ↔ R) ∧Q
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(j) (¬P ∨Q) ∧ ([P → Q] ∨ ¬S)

11. Check the truth value of these propositions using truth tables as in Example 1.1.12.
(a) If 2 + 3 = 7, then 5 − 9 ≠ 0.
(b) If a square is round implies that some functions have a derivative at x = 2,

then every function has a derivative at x = 2.
(c) Either four is odd or two is even implies that three is even.
(d) Every even integer is divisible by 4 if and only if either 7 divides 21 or 9

divides 12.
(e) The graph of the tangent function has asymptotes, and if sine is an increasing

function, then cosine is a decreasing function.

12. If possible, find propositional forms p and q such that
(a) p ∧ q is a tautology.
(b) p ∨ q is a contradiction.
(c) ¬p is a tautology.
(d) p→ q is a contradiction.
(e) p↔ q is a tautology.
(f) p↔ q is a contradiction.

1.2 INFERENCE

Now that we have a collection of propositional forms and a means by which to inter-
pret them as either true or false, we want to define a system that expands these ideas to
include methods by which we can prove certain propositional forms from given propo-
sitional forms. What we will define is familiar because it is similar to what Euclid did
with his geometry. Take, for example, the familiar result,

opposite angles in a parallelogram are congruent.

In other words,
if ABCD is a parallelogram, then ∠B ≅ ∠D,

which translates to:
Given: ABCD is a parallelogram,
Prove: ∠B ≅ ∠D.

To demonstrate this, we draw a diagram,

D

BA

C

and then write a proof:
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1. ABCD is a parallelogram Given
2. Join AC Postulate
3. ∠DAC ≅ ∠BCA Alternate interior angles
4. ∠ACD ≅ ∠CAB Alternate interior angles
5. AC ≅ AC Reflexive
6. △ACD ≅△CAB ASA
7. ∠B ≅ ∠D Corresponding parts

Euclid’s geometry consists of geometric propositions that are established by proofs
like the above. These proofs rely on rules of logic, previously proved propositions
(lemmas, theorems, and corollaries), and propositions that are assumed to be true (the
postulates). Using this system of thought, we can show which geometric propositions
follow from the postulates and conclude which propositions are true, whatever it means
for a geometric proposition to be true. Euclidean geometry serves as a model for the
following modern definition.

DEFINITION 1.2.1

A logical system consists of the following:
∙ An alphabet
∙ A grammar
∙ Propositional forms that require no proof
∙ Rules that determine truth
∙ Rules that are used to write proofs.

Although Euclid did not provide an alphabet or a grammar specifically for his geometry,
his system did include the last three aspects of a logical system. In this chapter we
develop the logical system known as propositional logic. Its alphabet, grammar, and
rules that determine truth were defined in Section 1.1. The remainder of this chapter is
spent establishing the other two components.

Consider the following collection of propositions:
If squares are rectangles, then squares are quadrilaterals.
Squares are rectangles.
Therefore, squares are quadrilaterals.

This is an example of a deduction, a collection of propositions of which one is supposed
to follow necessarily from the others. In this particular case,

if squares are rectangles, then squares are quadrilaterals

and
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squares are rectangles

are the premises, and
squares are quadrilaterals

is the conclusion. We recognize that in this case, the conclusion does follow from the
premises because whenever the premises are true, the conclusion must also be true.
When this is the case, the deduction is semantically valid, else it is semantically in-
valid.

Notice that not only do we see that the deduction works because of the meaning of
the propositions, but we also see that it is valid based on the forms of the sentences. In
other words, we also recognize this deduction as valid:

If Hausdorff spaces are preregular, their points can be separated.
Hausdorff spaces are preregular.
Therefore, their points can be separated.

Although wemight not know the termsHausdorff space, preregular, and separated, we
recognize the deduction as valid because it is of the same pattern as the first deduction:

p→ q
p
∴ q

(1.2)

When the deduction is found to work based on its form, the deduction is syntactically
valid, else it is syntactically invalid.

We study both types of validity by examining general patterns of deductions and
choosing rules that determine which forms correspond to deductions that are valid se-
mantically and which forms correspond to deductions that are valid syntactically.

Semantics

The study of meaning is called semantics. We began this study when we wrote truth
tables. These are characterized as semantic because the truth value of a proposition is
based on its meaning. Our goal is to use truth tables to determine when an argument
form, an example being (1.2), corresponds to a deduction that is semantically valid.
We begin with a definition.

DEFINITION 1.2.2

Let p0, p1,… , pn−1 and q be propositional forms.
∙ If q is a tautology, write ⊨ q.
∙ Define p0, p1,… , pn−1 to logically imply q if

⊨ p0 ∧ p1 ∧ · · · ∧ pn−1 → q.
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When p0, p1,… , pn−1 logically imply q, write
p0, p1,… , pn−1 ⊨ q.

and say that q is a consequence of p0, p1,… , pn−1. Call the propositionalforms p0, p1,… , pn−1 the premises of the implication and q the conclu-
sion.

Notice that if p0, p1,… , pn−1 ⊨ q, then for any valuation v, whenever v(pi) = T for all
i = 0, 1,… , n − 1, it must be the case that v(q) = T. Moreover, any deduction with
premises represented by p0, p1,… , pn−1 and conclusion by q is semantically valid if
p0, p1,… , pn−1 ⊨ q.

EXAMPLE 1.2.3

Because of Example 1.1.13, both ⊨ P → P and ⊨ P ∨ ¬P .

EXAMPLE 1.2.4

Prove: P → Q, P ⊨ Q

To accomplish this, show that the propositional form
(P → Q) ∧ P → Q,

with antecedent equal to the conjunction of the premises and consequent consist-
ing of the conclusion is a tautology.

P Q P → Q (P → Q) ∧ P (P → Q) ∧ P → Q
T T T T T
T F F F T
F T T F T
F F T F T

Therefore, ⊨ (P → Q) ∧ P → Q, so
P → Q, P ⊨ Q,

and any deduction based on this form is semantically valid.

EXAMPLE 1.2.5

Prove: P ∨Q→ Q, P ⊨ Q
P Q P ∨Q P ∨Q→ Q (P ∨Q→ Q) ∧ P (P ∨Q→ Q) ∧ P → Q
T T T T T T
T F T F F T
F T T T F T
F F F T F T

If it is possible for v(pi) = T for i = 0, 1,… , n− 1 yet v(q) = F, the propositional form
p0 ∧ p1 ∧ · · · ∧ pn−1 → q
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is not a tautology, so q is not a consequence of p0, p1,… , pn−1. If this is the case, write
p0, p1,… , pn−1 ̸⊨ q.

EXAMPLE 1.2.6

Prove: P ∧Q→ Q, P ̸⊨ Q

P Q P ∧Q P ∧Q→ Q (P ∧Q→ Q) ∧ P (P ∧Q→ Q) ∧ P → Q
T T T T T T
T F F T T F
F T F T F T
F F F T F T

Notice that F appears for (P ∧Q→ Q) ∧ P → Q on a line when
v(P ∧Q→ Q) = v(P ) = T

yet v(Q) = F. Because of this, we can shorten the procedure for showing that a propo-
sitional form is not a consequence of other propositional forms.

EXAMPLE 1.2.7

Prove: P ∧Q→ R ̸⊨ P → R

P Q R P ∧Q→ R P → R
T F F T F

Observe that this shows that the valuation of P ∧ Q → R can be T at the same
time that the valuation of P → R is F.

Syntactics

Although we will return to semantics, it is important to note that using truth tables to
check for logical implication has its limitations. If the argument form involves many
propositional forms or if the propositional forms are complicated, the truth table used
to show or disprove the logical implication can become unwieldy. Another issue is
that in practice, truth tables are not the method of choice when determining whether
a conclusion follows from the premises. What is typically done is to follow Euclid’s
example (page 20), basing the conclusions on the syntax of the argument form, namely,
based only on its pattern and structure.

Let us return to the deduction on page 20 and work with it differently. Start with the
two propositions,

if squares are rectangles, then squares are quadrilaterals

and
squares are rectangles.

Because of the combined structure of the two sentences, we know that we can write
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squares are quadrilaterals.

This act of writing (on paper or a blackboard or in the mind) means that we have the
proposition and that it follows from the first two. Similarly, if we start with

squares are triangles, or squares are rectangles

and
squares are not triangles,

we can write
squares are rectangles.

Determining a method that will model this reasoning requires us to find rules by
which propositional forms can be written from other propositional forms. Since ev-
ery logical system requires a starting point, the first step in this process is to choose
which propositional forms can be written without any prior justification. Each such
propositional form is called an axiom. Playing the same role as that of a postulate in
Euclidean geometry, an axiom can be considered as a rule of the game. Certain propo-
sitional forms lend themselves as good candidates for axioms because they are regarded
as obvious. That is, they are self-evident. Other propositional forms are good candi-
dates to be axioms, not because they are necessarily self-evident, but because they are
helpful. In either case, the number of axioms should be as few as possible so as to min-
imize the number of assumptions. For propositional logic, we choose only three. They
were first found in work of Gottlob Frege (1879) and later in that of Jan Łukasiewicz
(1930).

AXIOMS 1.2.8 [Frege–Łukasiewicz]

Let p, q, and r be propositional forms.
∙ [FL1] p → (q → p)

∙ [FL2] p → (q → r)→ (p→ q → [p→ r])

∙ [FL3] ¬p→ ¬q → (q → p).
The next step in defining propositional logic is to state when it is legal to write a

propositional form from given propositional forms.
DEFINITION 1.2.9

The propositional forms p0, p1,… , pn−1 infer q if q can be written whenever
p0, p1,… , pn−1 are written. Denote this by

p0, p1,… , pn−1 ⇒ q.

This is known as an inference.
To make rigorous which propositional forms can be inferred from given forms, we

establish some rules. These are chosen because they model basic reasoning. They are
also not proved, so they serve as postulates for our logic.
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INFERENCE RULES 1.2.10

Let p, q, r, and s be propositional forms.
∙ Modus Ponens [MP]
p→ q, p⇒ q

∙ Modus Tolens [MT]
p→ q,¬q ⇒ ¬p

∙ Constructive Dilemma [CD]
(p→ q) ∧ (r → s), p ∨ r⇒ q ∨ s

∙ Destructive Dilemma [DD]
(p→ q) ∧ (r → s),¬q ∨ ¬s ⇒ ¬p ∨ ¬r

∙ Disjunctive Syllogism [DS]
p ∨ q,¬p⇒ q

∙ Hypothetical Syllogism [HS]
p→ q, q → r⇒ p→ r

∙ Conjunction [Conj]
p, q ⇒ p ∧ q

∙ Simplification [Simp]
p ∧ q ⇒ p

∙ Addition [Add]
p⇒ p ∨ q.

To use Inference Rules 1.2.10, match the form exactly. For example, even though
P → R appears to follow from (P ∧Q)→ R as an application of simplification, it does
not. The problem is that simplification can only be applied to propositional forms with
the p ∧ q pattern, but (P ∧Q) → R is of the form p → q. With this detail in mind, we
make some inferences.

EXAMPLE 1.2.11

Each inference is justified by the indicated rule.
∙ Modus ponens
P ∧Q→ ¬R, P ∧Q⇒ ¬R

∙ Addition
P ⇒ P ∨Q ∧ R

∙ Modus tolens
¬¬P ,Q ∨ R→ ¬P ⇒ ¬(Q ∨ R).
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EXAMPLE 1.2.12

Since it is possible that some propositional forms are not needed for the inference,
we also have the following:

∙ Modus ponens
P ∧Q→ ¬R, P ∨Q, P ∧Q,Q↔ S ⇒ ¬R

∙ Addition
P ,R, S → T ⇒ P ∨Q ∧ R

∙ Modus tolens
¬S,¬¬P , P ∧ T ,Q ∨ R→ ¬P ⇒ ¬(Q ∨ R).

Inference is a powerful tool, but it can only be used to check simple deductions.
Sometimes multiple inferences are needed to move from a collection of premises to a
conclusion. For example, if we write

p ∨ q,¬p, q → r,

based on the first two propositional forms, we can write
q

byDS, and then based on this propositional form and the third of the given propositional
forms, we can write

r

by MP. This is a simple example of the next definition.
DEFINITION 1.2.13

∙ A formal proof of the propositional form q (the conclusion) from the proposi-
tional forms p0, p1,… , pn−1 (the premises) is a sequence of propositional forms,

p0, p1,… , pn−1, q0, q1,… , qm−1,

such that qm−1 = q, and for all i = 0, 1,… , m − 1, either qi is an axiom,
if i = 0, then p0, p1,… , pn−1 ⇒ qi, or

if i > 0, then p0, p1,… , pn−1, q0, q1,… , qi−1 ⇒ qi.
If there exists a formal proof of q from p0, p1,… , pn−1, then q is proved or de-
duced from p0, p1,… , pn−1 and we write

p0, p1,… , pn−1 ⊢ q.

∙ If there are no premises, a formal proof of q is a sequence,
q0, q1,… , qm−1,
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such that q0 is an axiom, qm−1 = q, and for all i > 0, either qi is an axiom or
q0, q1,… , qi−1 ⇒ qi.

In this case, write ⊢ q and call q a theorem.

Observe that any deduction with premises represented by p0, p1,… , pn−1 and conclu-
sion by q is syntactically valid if p0, p1,… , pn−1 ⊢ q.We should note that although⇒ and⊢ have different meanings as syntactic symbols,
they are equivalent. If p ⇒ q, then p ⊢ q using the proof p, q. Conversely, suppose
p ⊢ q. This means that there exists a proof

p, q0, q1,… , qn−1, q,

so every time we write down p, we can also write down q. That is, p⇒ q. We summa-
rize this as follows.

THEOREM 1.2.14

For all propositional forms p and q, p⇒ q if and only if p ⊢ q.
We use a particular style to write formal proofs. They will be in two-column format

with each line being numbered. In the first columnwill be the sequence of propositional
forms that make up the proof. In the second column will be the reasons that allowed
us to include each form. The only reasons that we will use are

∙ Given (for premises),
∙ FL1, FL2, or FL3 (for an axiom),
∙ An inference rule.

An inference rule is cited by giving the line numbers used as the premises followed by
the abbreviation for the rule. Thus, the following proves P ∨Q→ Q ∧ R, P ⊢ Q:

1. P ∨Q→ Q ∧ R Given
2. P Given
3. P ∨Q 2 Add
4. Q ∧ R 1, 3 MP
5. Q 4 Simp

Despite the style, we should remember that a proof is a sequence of propositional forms
that satisfy Definition 1.2.13. In this case, the sequence is

P ∨Q → Q ∧ R, P , P ∨Q,Q ∧ R,Q.

The first two examples involve proofs that use the axioms.
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EXAMPLE 1.2.15

Prove: ⊢ P → Q→ (P → P )

1. P → (Q→ P ) FL1
2. P → (Q→ P )→ (P → Q → [P → P ]) FL2
3. P → Q→ (P → P ) MP

This proves that P → Q → (P → P ) is a theorem. Also, by adding P → Q as a
given and an application of MP at the end, we can prove

P → Q ⊢ P → P .

This result should not be surprising since P → P is a tautology. Wewould expect
any premise to be able to prove it.

EXAMPLE 1.2.16

Prove: ¬(Q→ P ),¬P ⊢ ¬Q

1. ¬(Q→ P ) Given
2. ¬P Given
3. ¬P → ¬Q→ (Q→ P ) FL3
4. ¬P → ¬Q 1, 3 MT
5. ¬Q 2, 4 MP

The next three examples do not use an axiom in their proofs.
EXAMPLE 1.2.17

Prove: P → Q,Q→ R,S ∨ ¬R,¬S ⊢ ¬P

1. P → Q Given
2. Q→ R Given
3. S ∨ ¬R Given
4. ¬S Given
5. P → R 1, 2 HS
6. ¬R 3, 4 DS
7. ¬P 5, 6 MT

EXAMPLE 1.2.18

Prove: P → Q, P → Q → (T → S), P ∨ T ,¬Q ⊢ S

1. P → Q Given
2. P → Q→ (T → S) Given
3. P ∨ T Given
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4. ¬Q Given
5. T → S 1, 2 MP
6. (P → Q) ∧ (T → S) 1, 5 Conj
7. Q ∨ S 3, 6 CD
8. S 4, 7 DS

EXAMPLE 1.2.19

Prove: P → Q,Q→ R,¬R ⊢ ¬Q ∨ ¬P

1. P → Q Given
2. Q → R Given
3. ¬R Given
4. (Q→ R) ∧ (P → Q) 1, 2 Conj
5. ¬R ∨ ¬Q 3 Add
6. ¬Q ∨ ¬P 4, 5 DD

Exercises

1. Show using truth tables.
(a) ¬P ∨Q,¬Q ⊨ ¬P
(b) ¬(P ∧Q), P ⊨ ¬Q
(c) P → Q, P ⊨ Q ∨ R
(d) P → Q,Q→ R, P ⊨ R
(e) P ∨Q ∧ R,¬P ⊨ R

2. Show the following using truth tables.
(a) ¬(P ∧Q) ̸⊨ ¬P
(b) P → Q ∨ R, P ̸⊨ Q
(c) P ∧Q→ R ̸⊨ Q→ R
(d) (P → Q) ∨ (R → S), P ∨ R ̸⊨ Q ∨ S
(e) ¬(P ∧Q) ∨ R, P ∧Q ∨ S ̸⊨ R ∧ S
(f) P ∨ R,Q ∨ S,R↔ S ̸⊨ R ∧ S

3. Identify the rule from Inference Rules 1.2.10.
(a) P → Q→ P , P → Q⇒ P
(b) P ,Q ∨ R⇒ P ∧ (Q ∨ R)
(c) P ⇒ P ∨ (R ↔ ¬P ∧ ¬[Q → S])
(d) P , P → (Q↔ S)⇒ Q↔ S
(e) P ∨Q ∨Q, (P ∨Q→ Q) ∧ (Q → S ∧ T )⇒ Q ∨ S ∧ T
(f) P ∨ (Q ∨ S),¬P ⇒ Q ∨ S
(g) P → ¬Q,¬¬Q⇒ ¬P
(h) (P → Q) ∧ (Q → R),¬Q ∨ ¬R ⇒ ¬P ∨ ¬Q
(i) (P → Q) ∧ (Q → R)⇒ P → Q
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4. Arrange each collection of propositional forms into a proof for the given deductions
and supply the appropriate reasons.

(a) P → Q,R→ S, P ⊢ Q ∨ S
∙ P
∙ Q ∨ S
∙ R→ S
∙ (P → Q) ∧ (R → S)
∙ P ∨ R
∙ P → Q

(b) P → Q,Q→ R, P ⊢ R ∨Q
∙ P
∙ P → R
∙ P → Q
∙ R
∙ Q→ R
∙ R ∨Q

(c) (P → Q) ∨ (Q → R),¬(P → Q),¬R,Q ∨ S ⊢ S
∙ ¬(P → Q)
∙ S
∙ (P → Q) ∨ (Q → R)
∙ Q→ R
∙ ¬R
∙ ¬Q
∙ Q ∨ S

(d) (P ∨Q) ∧ R,Q ∨ S → T ,¬P ⊢ ¬P ∧ T
∙ P ∨Q
∙ Q
∙ Q ∨ S
∙ T
∙ (P ∨Q) ∧ R
∙ Q ∨ S → T
∙ ¬P
∙ ¬P ∧ T

5. Prove using Axioms 1.2.8.
(a) ⊢ P → P
(b) ⊢ ¬¬P → P
(c) ⊢ P → (P → [Q → P ])
(d) ¬P ⊢ P → Q
(e) P → Q,Q→ R ⊢ P → R (Do not use HS.)
(f) P → Q,¬Q ⊢ ¬P (Do not use MT.)
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6. Prove. Axioms 1.2.8 are not required.
(a) P → Q, P ∨ (R → S),¬Q ⊢ R→ S
(b) P → Q,Q→ R,¬R ⊢ ¬P
(c) P → Q,R→ S,¬Q ∨ ¬S ⊢ ¬P ∨ ¬R
(d) [P → (Q→ R)] ∧ [Q → (R→ P )], P ∨Q,¬(Q→ R),¬P ⊢ ¬R
(e) P → Q→ (R→ S), S → T , P → Q,R ⊢ T
(f) P → Q ∧ R,Q ∨ S → T ∧ U, P ⊢ T
(g) P → Q ∧ R,¬(Q ∧ R), Q ∧ R ∨ (¬P → S) ⊢ S
(h) P ∨Q→ ¬R ∧ ¬S,Q→ R, P ⊢ ¬Q
(i) N → P , P ∨Q ∨ R→ S ∨ T , S ∨ T → T ,N ⊢ T
(j) P → Q,Q→ R,R→ S, S → T , P ∨ R,¬R ⊢ T
(k) P ∨Q→ R ∨ S, (R→ T ) ∧ (S → U ), P ,¬T ⊢ U
(l) P → Q,Q→ R,R→ S, (P ∨Q) ∧ (R ∨ S) ⊢ Q ∨ S
(m) P ∨ ¬Q ∨ R→ (S → P ), P ∨ ¬Q → (P → R), P ⊢ S → R

1.3 REPLACEMENT

There are timeswhenwriting a formal proof that wewant to substitute one propositional
form for another. This happens when two propositional forms have the same valuations.
It also happens when a particular sentence pattern should be able to replace another
sentence pattern. We give rules in this section that codify both ideas.

Semantics

Consider the propositional form ¬(P ∨ Q). Its valuation equals T when it is not the
case that v(P ) = T or v(Q) = T (Definition 1.1.9). This implies that v(P ) = F and
v(Q) = F, so v(¬P ∧¬Q) = T. Conversely, the valuation of ¬P ∧¬Q is T implies that
the valuation of ¬(P ∨ Q) is T for similar reasons. Since no additional premises were
assumed in this discussion, we conclude that

v(¬[P ∨Q]) = v(¬P ∧ ¬Q), (1.3)
and this means that

¬(P ∨Q)↔ ¬P ∧ ¬Q

is a tautology. There is a name for this.
DEFINITION 1.3.1

Two propositional forms p and q are logically equivalent if ⊨ p↔ q.
Observe that Definition 1.3.1 implies the following result.

THEOREM 1.3.2

All tautologies are logically equivalent, and all contradictions are logically equiv-
alent.
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Because of (1.3), we can use a truth table to prove logical equivalence.
EXAMPLE 1.3.3

Prove: ⊨ ¬(P ∨Q)↔ ¬P ∧ ¬Q.
P Q P ∨Q ¬(P ∨Q) ¬P ¬Q ¬P ∧ ¬Q
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

EXAMPLE 1.3.4

Because ⊨ P → Q ↔ ¬P ∨ Q, we can replace P → Q with ¬P ∨ Q, and vice
versa, at any time. When this is done, the resulting propositional form is logically
equivalent to the original. For example,

⊨ Q ∧ (P → Q)↔ Q ∧ (¬P ∨Q).

To see this, examine the truth table
P Q P → Q Q ∧ (P → Q) ¬P ¬P ∨Q Q ∧ (¬P ∨Q)
T T T T F T T
T F F F F F F
F T T T T T T
F F T F T T F

EXAMPLE 1.3.5

Consider R ∧ (P → Q). Since ⊨ P → Q ↔ ¬Q → ¬P [Exercise 2(f)], we can
replace P → Q with ¬Q→ ¬P giving

⊨ R ∧ (P → Q)↔ R ∧ (¬Q → ¬P ).

When studying an implication, we sometimes need to investigate the different ways
that its antecedent and consequent relate to each other.

DEFINITION 1.3.6

The converse of a given implication is the conditional proposition formed by
exchanging the antecedent and consequent of the implication (Figure 1.2).

DEFINITION 1.3.7

The contrapositive of a given implication is the conditional proposition formed
by exchanging the antecedent and consequent of the implication and then replac-
ing them with their negations (Figure 1.3).
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If      the antecedent,      then      the consequent.

If        the consequent,         then       the antecedent.

Figure 1.2 Writing the converse.

If      the antecedent,      then      the consequent.

If       not the consequent,      then       not the antecedent.

Figure 1.3 Writing the contrapositive.

For example, the converse of
if rectangles have four sides, squares have for sides

is
if squares have four sides, rectangles have four sides,

and its contrapositive is
if squares do not have four sides, rectangles do not have four sides.

Notice that a biconditional proposition is simply the conjunction of a conditional with
its converse.

EXAMPLE 1.3.8

The propositional form P → Q has Q → P as its converse and ¬Q → ¬P as its
contrapositive. The first and fourth columns on the right of the next truth table
show ⊨ P → Q ↔ ¬Q → ¬P , while ̸⊨ P → Q ↔ Q → P is shown by the first
and last columns.

P Q P → Q ¬Q ¬P ¬Q→ ¬P Q→ P
T T T F F T T
T F F T F F T
F T T F T T F
F F T T T T T
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Syntactics

If we limit our proofs to Inference Rules 1.2.10, we quickly realize that there will be
little of interest that we can prove. We would have no reason on which to base such
clear inferences as

P ⊢ Q ∨ P

or
P ∨Q,¬Q ⊢ P .

To fix this, we expand our collection of inference rules with a new type.
Suppose that we know that the form p ∧ q can replace q ∧ p at any time and vice

versa. For example, in the propositional form
P ∧Q → R, (1.4)

P ∧Q can be replaced with Q ∧ P so that we can write the new form
Q ∧ P → R. (1.5)

This type of rule is called a replacement rule and is written using the⇔ symbol. For
example, the replacement rule that allowed us to write (1.5) from (1.4) is

p ∧ q ⇔ q ∧ p.

Similarly, when the replacement rule
¬(p ∧ q)⇔ ¬p ∨ ¬q

is applied to P ∨ (¬Q ∨ ¬R), the result is P ∨ ¬(Q ∧ R). We state without proof the
standard replacement rules.

REPLACEMENT RULES 1.3.9

Let p, q, and r be propositional forms.
∙ Associative Laws [Assoc]
p ∧ q ∧ r⇔ p ∧ (q ∧ r)
p ∨ q ∨ r⇔ p ∨ (q ∨ r)

∙ Commutative Laws [Com]
p ∧ q ⇔ q ∧ p
p ∨ q ⇔ q ∨ p

∙ Distributive Laws [Distr]
p ∧ (q ∨ r)⇔ p ∧ q ∨ p ∧ r
p ∨ q ∧ r⇔ (p ∨ q) ∧ (p ∨ r)

∙ Contrapositive Law [Contra]
p→ q ⇔ ¬q → ¬p
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∙ Double Negation [DN]
p ⇔ ¬¬p

∙ De Morgan’s Laws [DeM]
¬(p ∧ q)⇔ ¬p ∨ ¬q
¬(p ∨ q)⇔ ¬p ∧ ¬q

∙ Idempotency [Idem]
p ∧ p⇔ p
p ∨ p⇔ p

∙ Material Equivalence [Equiv]
p ↔ q ⇔ (p→ q) ∧ (q → p)
p ↔ q ⇔ p ∧ q ∨ ¬p ∧ ¬q

∙ Material Implication [Impl]
p → q ⇔ ¬p ∨ q

∙ Exportation [Exp]
p ∧ q → r⇔ p→ (q → r).

A replacement rule is used in a formal proof by appealing to the next inference rule.
INFERENCE RULE 1.3.10

For all propositional forms p and q, if p if obtained from q using a replacement
rule, p⇒ q and q ⇒ p.
As with Inference Rules 1.2.10, the replacement rule used when applying Inference

Rule 1.3.10 must be used exactly as stated. This includes times when it seems unnec-
essary because it appears obvious. For example, P ∨ Q does not follow directly from
¬P → Q using Impl. Instead, include a use of DN to give the correct sequence,

¬P → Q,¬¬P ∨Q, P ∨Q.

Similarly, the inference rule Add does not allow forQ∨P to be derived fromP . Instead,
we derive P ∨Q. Follow this by Com to conclude Q ∨ P .

When writing formal proofs that appeal to Inference Rule 1.3.10, do not cite that
particular rule but reference the replacement rule’s abbreviation using Replacement
Rule 1.3.9 and the line which serves as a premise to the replacement. We use this
practice in the following examples.

EXAMPLE 1.3.11

Although it is common practice to move parentheses freely when solving equa-
tions, inferences such as

P ∧Q ∧ (R ∧ S) ⊢ P ∧ (Q ∧ R) ∧ S
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must be carefully demonstrated. Fortunately, this example only requires two ap-
plications of the associative law. Using the boxes as a guide, notice that

P ∧Q ∧ ( R ∧ S )

is of the same form as the right-hand side of the associative law. Hence, we can
remove the parentheses to obtain

P ∧Q ∧ R ∧ S .

Next, view the propositional form as
P ∧Q ∧ R ∧ S .

One more application within the first box yields the result,
P ∧ (Q ∧ R) ∧ S .

We may, therefore, write a sequence of inferences by Inference Rule 1.3.10,
P ∧Q ∧ (R ∧ S)⇒ (P ∧Q ∧ R) ∧ S ⇒ [P ∧ (Q ∧ R)] ∧ S,

and we have a proof of [P ∧ (Q ∧ R)] ∧ S from P ∧Q ∧ (R ∧ S):
1. P ∧Q ∧ (R ∧ S) Given
2. P ∧Q ∧ R ∧ S 1 Assoc
3. P ∧ (Q ∧ R) ∧ S 2 Assoc

EXAMPLE 1.3.12

Prove: R ∧ S ⊢ ¬R→ P

1. R ∧ S Given
2. R 1 Simp
3. R ∨ P 2 Add
4. ¬¬R ∨ P 3 DN
5. ¬R→ P 4 Impl

EXAMPLE 1.3.13

Prove: P → Q,R→ Q ⊢ P ∨ R→ Q

1. P → Q Given
2. R→ Q Given
3. (P → Q) ∧ (R → Q) 1, 2 Conj
4. (¬P ∨Q) ∧ (¬R ∨Q) 3 Impl
5. (Q ∨ ¬P ) ∧ (Q ∨ ¬R) 4 Com
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6. Q ∨ ¬P ∧ ¬R 5 Dist
7. ¬P ∧ ¬R ∨Q 6 Com
8. ¬(P ∨ R) ∨Q 7 DeM
9. P ∨ R→ Q 8 Impl

EXAMPLE 1.3.14

Prove: P ∧Q ∨ R ∧ S ⊢ (P ∨ S) ∧ (Q ∨ R)

1. P ∧Q ∨ R ∧ S Given
2. (P ∧Q ∨ R) ∧ (P ∧Q ∨ S) 1 Dist
3. (R ∨ P ∧Q) ∧ (S ∨ P ∧Q) 2 Com
4. (R ∨ P ) ∧ (R ∨Q) ∧ [(S ∨ P ) ∧ (S ∨Q)] 3 Dist
5. (R ∨Q) ∧ (R ∨ P ) ∧ [(S ∨ P ) ∧ (S ∨Q)] 4 Com
6. (R ∨Q) ∧ ([R ∨ P ] ∧ [(S ∨ P ) ∧ (S ∨Q)]) 5 Assoc
7. R ∨Q 6 Simp
8. (S ∨ P ) ∧ (S ∨Q) ∧ [(R ∨Q) ∧ (R ∨ P )] 5 Com
9. (S ∨ P ) ∧ (S ∨Q) 8 Simp
10. S ∨ P 9 Simp
11. (S ∨ P ) ∧ (R ∨Q) 7, 10 Conj
12. (P ∨ S) ∧ (Q ∨ R) 11 Com

EXAMPLE 1.3.15

Both ⊢ P → P and ⊢ P ∨ ¬P . Here is the proof for the second theorem:
1. P → (P → P ) FL1
2. ¬P ∨ (¬P ∨ P ) 1 Impl
3. (¬P ∨ ¬P ) ∨ P 2 Assoc
4. ¬P ∨ P 3 Idem
5. P ∨ ¬P 4 Com

This proof can be generalized to any propositional form p, so that we also have
⊢ p→ p and ⊢ p ∨ ¬p.

The theorem p ∨ ¬p is known as the law of the excluded middle, and the theorem
¬(p ∧ ¬p) is the law of noncontradiction. Notice that by De Morgan’s law with Com
and DN, we have for all propositional forms p

⊢ (p ∨ ¬p) ↔ ¬(p ∧ ¬p).

Exercises

1. The inverse of a given implication is the contrapositive of the implication’s con-
verse. Write the converse, contrapositive, and inverse for each conditional proposition
in Exercise 1.1.2.
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2. Prove using truth tables.
(a) ⊨ P ∨ ¬P ↔ P → P
(b) ⊨ P ∨ ¬P ↔ P ∨Q ∨ ¬(P ∧Q)
(c) ⊨ P ∧Q ↔ (P ↔ Q) ∧ (P ∨Q)
(d) ⊨ R ∧ (P → Q)↔ R ∧ (¬Q → ¬P )
(e) ⊨ P ∧Q → R↔ P ∧ ¬R → ¬Q
(f) ⊨ P → Q↔ ¬Q→ ¬P
(g) ⊨ P → Q ∧ R↔ (P → Q) ∧ (P → R)
(h) ⊨ P → Q→ (S → R)↔ (P → Q) ∧ S → R

3. A propositional form is in disjunctive normal form if it is a disjunction of con-
junctions. For example, the propositional form P ∧ (¬Q ∨ R) is logically equivalent
to

(P ∧Q ∧ R) ∨ (P ∧ ¬Q ∧ ¬R) ∨ (¬P ∧Q ∧ ¬R),

which is in disjunctive normal form. Find propositional forms in disjunctive normal
form that are logically equivalent to each of the following.

(a) P ∨Q ∧ (P ∨ ¬R)
(b) (P ∨Q) ∧ (¬P ∨ ¬Q)
(c) (P ∧ ¬Q ∨ R) ∧ (Q ∧ R ∨ P ∧ ¬R)
(d) P ∨ (¬Q ∨ [P ∧ ¬R ∨ P ∧ ¬Q])

4. Identify the rule from Replacement Rule 1.3.9.
(a) (P → Q) ∨ (Q → R) ∨ S ⇔ (P → Q) ∨ ([Q→ R] ∨ S)
(b) ¬¬P ↔ Q ∧ R⇔ P ↔ Q ∧ R
(c) P ∨Q ∨ R⇔ Q ∨ P ∨ R
(d) ¬P ∧ ¬(Q ∨ R)⇔ ¬(P ∨ [Q ∨ R])
(e) ¬(P ∨Q) ∨ R⇔ P ∨Q→ R
(f) P ↔ Q→ R⇔ P ∧ (Q → R) ∨ ¬P ∧ ¬(Q → R)
(g) P ∨Q↔ Q ∧Q⇔ P ∨Q↔ Q
(h) P ∧Q ∧ R⇔ R ∧ (P ∧Q)
(i) (P ∨Q) ∧ (Q ∨ R)⇔ (P ∨Q) ∧Q ∨ (P ∨Q) ∧ R
(j) (P ∧ [R→ Q])→ S ⇔ P → (R→ Q→ S)

5. For each given propositional form p, find another propositional form q such that
p⇔ q using Replacement Rules 1.3.9.

(a) ¬¬P
(b) P ∨Q
(c) P → Q
(d) ¬(P ∧Q)
(e) (P ↔ Q) ∧ (¬P ↔ Q)
(f) (P → Q) ∨ (Q → S)
(g) (P → Q) ∨ P
(h) ¬(P → Q)
(i) (P → Q) ∧ (Q ↔ R)
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(j) (P ∨ ¬Q) ↔ T ∧Q
(k) P ∨ (¬Q ↔ T ) ∧Q

6. Arrange each collection of propositional forms into a proof for the given deduction
and supply the appropriate reasons.

(a) P ∨Q→ R ⊢ (P → R) ∧ (Q → R)
∙ R ∨ ¬P ∧ ¬Q
∙ (¬P ∨ R) ∧ (¬Q ∨ R)
∙ ¬(P ∨Q) ∨ R
∙ (P → R) ∧ (Q → R)
∙ (R ∨ ¬P ) ∧ (R ∨ ¬Q)
∙ ¬P ∧ ¬Q ∨ R
∙ P ∨Q→ R

(b) ¬(P ∧Q)→ R ∨ S,¬P ,¬S ⊢ R
∙ ¬(P ∧Q)→ R ∨ S
∙ ¬S
∙ S ∨ R
∙ R
∙ ¬(P ∧Q)
∙ ¬P
∙ R ∨ S
∙ ¬P ∨ ¬Q

(c) P → (Q→ R),¬P → S,¬Q→ T ,R→ ¬R ⊢ ¬T → S
∙ S ∨ T
∙ ¬R ∨ ¬R
∙ R→ ¬R
∙ ¬R
∙ ¬(P ∧Q)
∙ T ∨ S
∙ ¬¬T ∨ S
∙ ¬P ∨ ¬Q
∙ P ∧Q→ R
∙ P → (Q→ R)
∙ ¬P → S
∙ ¬Q→ T
∙ ¬T → S
∙ (¬P → S) ∧ (¬Q → T )

7. Prove.
(a) ¬P ⊢ P → Q
(b) P ⊢ ¬Q→ P
(c) ¬Q ∨ (¬R ∨ ¬P ) ⊢ P → ¬(Q ∧ R)
(d) P → Q ⊢ P ∧ R→ Q
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(e) P → Q ∧ R ⊢ P → Q
(f) P ∨Q→ R ⊢ ¬R→ ¬Q
(g) P → (Q→ R) ⊢ Q ∧ ¬R → ¬P
(h) P → (Q→ R) ⊢ Q→ (P → R)
(i) P ∧Q ∨ R ∧ S ⊢ ¬S → P ∧Q
(j) Q→ R ⊢ P → (Q→ R)
(k) P → ¬(Q→ R) ⊢ P → ¬R
(l) P ∨ (Q ∨ R ∨ S) ⊢ (P ∨Q) ∨ (R ∨ S)
(m) Q ∨ P → R ∧ S ⊢ Q→ R
(n) P ↔ Q ∧ R ⊢ P → Q
(o) P ↔ Q ∨ R ⊢ Q→ P
(p) P ∨Q ∨ R→ S ⊢ Q→ S
(q) (P ∨Q) ∧ (R ∨ S) ⊢ P ∧ R ∨ P ∧ S ∨ (Q ∧ R ∨Q ∧ S)
(r) P ∧ (Q ∨ R)→ Q ∧ R ⊢ P → (Q→ R)
(s) P ↔ Q,¬P ⊢ ¬Q
(t) P → Q → R,¬R ⊢ ¬Q
(u) P → (Q→ R), R→ S ∧ T ⊢ P → (Q→ T )
(v) P → (Q→ R), R→ S ∨ T ⊢ (P → S) ∨ (Q → T )
(w) P → Q, P → R ⊢ P → Q ∧ R
(x) P ∨Q→ R ∧ S,¬P → (T → ¬T ),¬R ⊢ ¬T
(y) (P → Q) ∧ (R → S), P ∨ R, (P → ¬S) ∧ (R → ¬Q) ⊢ Q↔ ¬S
(z) P ∧ (Q ∧ R), P ∧ R→ S ∨ (T ∨M),¬S ∧ ¬T ⊢ M

1.4 PROOF METHODS

The methods of Sections 1.2 and 1.3 provide a good start for writing formal proofs.
However, in practice we rarely limit ourselves to these rules. We often use inference
rules that give a straightforward way to prove conditional propositions and allow us to
prove a proposition when it is easier to disprove its negation. In both the cases, the new
inference rules will be justified using the rules we already know.

Deduction Theorem

Because of Axioms 1.2.8, not all of the inference rules are needed to write the proofs
found in Sections 1.2 and 1.3. This motivates the next definition.

DEFINITION 1.4.1

Let p and q be propositional forms. The notation
p ⊢∗ q

means that there exists a formal proof of q from p using only Axioms 1.2.8, MP,
and Inference Rule 1.3.10, and the notation

⊢∗ q
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means that there exists a formal proof of q from Axioms 1.2.8 using only MP and
Inference Rule 1.3.10

For example, P ,Q,¬P ∨ (Q → R) ⊢∗ R because
1. P Given
2. Q Given
3. ¬P ∨ (Q → R) Given
4. P → (Q→ R) 3 Impl
5. Q→ R 1, 4 MP
6. R 2, 5 MP

is a formal proof using MP and Impl as the only inference rules.
We now observe that the propositional forms that can be proved using the full col-

lection of rules from Sections 1.2 and 1.3 are exactly the propositional forms that can
be proved when all rules are deleted from Inference Rules 1.2.10 except for MP.

THEOREM 1.4.2

For all propositional forms p and q, p ⊢∗ q if and only if p ⊢ q.
PROOF

Trivially, p ⊢∗ q implies p ⊢ q, so suppose that p ⊢ q. We show that the remain-
ing parts of Inference Rules 1.2.10 are equivalent to using only Axioms 1.2.8,
MP, and Replacement Rules 1.3.9. We show three examples and leave the proofs
of the remaining inference rules to Exercise 6. The proof

1. p→ q Given
2. ¬q Given
3. ¬¬p→ ¬¬q DN
4. ¬¬p→ ¬¬q → (¬q → ¬p) FL3
5. ¬q → ¬p 3, 4 MP
6. ¬p 2, 5 MP

shows that
p→ q,¬q ⊢∗ ¬p.

Thus, we do not need MT. The proof
1. p Given
2. p→ (¬q → p) FL1
3. ¬q → p 1, 2 MP
4. ¬¬q ∨ p 3 Impl
5. q ∨ p 4 DN
6. p ∨ q 5 Com

shows that
p ⊢∗ p ∨ q,
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so we do not need Add. This implies that we can use Add to demonstrate that
p→ q, q → r ⊢∗ p→ r.

The proof is as follows:
1. p→ q Given
2. q → r Given
3. ¬q ∨ r 2 Impl
4. ¬q ∨ r ∨ ¬p 3 Add
5. ¬p ∨ (¬q ∨ r) 4 Com
6. p→ (q → r) 5 Impl
7. p→ (q → r)→ (p→ q → [p→ r]) FL2
8. p→ q → (p→ r) 6, 7 MP
9. p→ r 1, 8 MP

This implies that we do not need HS.
At this point, there is an obvious question: If only MP is needed from Inference

Rules 1.2.10, why were the other rules included? The answer is because the other
inference rules are examples of common reasoning and excluding themwould introduce
unnecessary complications to the formal proofs. Try reproving some of the deductions
of Section 1.2 with only MP and the axioms to confirm this.

When a formal proof in Section 1.3 involved proving an implication, the replacement
rule Impl would often appear in the proof. However, as we know from geometry, this
is not the typical strategy used to prove an implication. What is usually done is that the
antecedent is assumed and then the consequent is shown to follow. That this procedure
justifies the given conditional is the next theorem. Its proof requires a lemma.

LEMMA 1.4.3

Let p and q be propositional forms. If ⊢∗ q, then ⊢∗ p→ q.
PROOF

Let ⊢∗ q. By FL1, we have that ⊢∗ q → (p→ q), so ⊢∗ p→ q follows by MP.

THEOREM 1.4.4 [Deduction]

For all propositional forms p and q, p ⊢ q if and only if ⊢ p→ q.
PROOF

Let p and q be propositional forms. Assume that ⊢ p→ q, so there exists propo-
sitional forms r0, r1,… , rn−1 such that

r0, r1,… , rn−1, p→ q

is a proof, where r0 is an axiom, ri is an axiom or r0, r1,… , ri−1 ⇒ ri for i > 0,and p→ q follows from r0, r1,… , rn−1. Then,
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p, r0, r1,… , rn−1, p→ q, q

is also a proof, where the last inference is due to MP. Therefore, p ⊢ q.
By Theorem 1.4.2, to prove the converse, we only need to prove that

if p ⊢∗ q, then ⊢∗ p→ q.
Assume p ⊢∗ q. First note that if q is an axiom, then ⊢∗ q, so ⊢∗ p → q by
Lemma 1.4.3. Therefore, assume that q is not an axiom. We begin by checking
four cases.

∙ Suppose that the proof has only one propositional form. In this case, we
have that p = q, so the inference is of the form p ⊢∗ p. By FL1,

⊢∗ p→ (p→ p).

Because
p→ (p→ p)⇒ ¬p ∨ (¬p ∨ p)

⇒ (¬p ∨ ¬p) ∨ p
⇒ ¬p ∨ p
⇒ p→ p,

we conclude that ⊢∗ p→ p.
∙ Next, suppose the proof has two propositional forms and cannot be reduced
to the first case. This implies that p ⊢∗ q by a single application of a
replacement rule. Thus,

p→ (¬q → p) ⊢∗ p→ (¬q → q)

by a single application of the same replacement rule. Therefore,
p → (¬q → p)⇒ p→ (¬q → q)

⇒ p→ (¬¬q ∨ q)
⇒ p→ (q ∨ q)
⇒ p→ q.

This implies that ⊢∗ p→ q.
∙ We now consider the case when the proof of p ⊢∗ q has three propositionalforms and q follows by a rule of replacement. Let p, r, q be the proof. This
implies that p ⊢∗ r, which implies

⊢∗ p→ r (1.6)
because either r is an axiom and Lemma 1.4.3 applies or the previous two
cases apply. If q follows from p by a rule of replacement, then ⊢ p→ q by
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the previous case, so assume that q follows from r by a rule of replacement.
Thus, ⊢∗ r→ q, which implies by Lemma 1.4.3 that

⊢∗ p→ (r→ q). (1.7)
By FL2,

⊢∗ p→ (r→ q)→ (p→ r→ [p→ q]). (1.8)
Therefore, by (1.7) and (1.8) with MP,

⊢∗ p→ r→ (p→ q), (1.9)
and by (1.6) and (1.9) with MP,

⊢∗ p→ q.

∙ Again, let the proof have three propositional forms and write it as p, s, q.
Suppose that the inference that leads to q is MP. This means that r and
r → q are in the proof. Because either p = r and p ⊢∗ r→ q or p = r→ q
and p ⊢∗ r,

⊢∗ p→ r

and
⊢∗ p→ (r→ q).

Thus, as in the previous case, using (1.8), we obtain ⊢∗ p→ q.

These four cases exhaust the ways by which q can be proved from p with a
proof with at most three propositional forms. Therefore, since these cases can
be generalized to proofs of arbitrary length (Exercise 7), we conclude that p ⊢ q
implies ⊢ p→ q.

The deduction theorem (1.4.4) yields the next result. Its proof is left to Exercise 8.
COROLLARY 1.4.5

For all propositional forms p0, p1,… , pn−1, q, r,
p0, p1,… , pn−1, q ⊢ rif and only if
p0, p1,… , pn−1 ⊢ q → r.

Direct Proof

Most propositions that mathematicians prove are implications. For example,
if a function is differentiable at a point, it is continuous at that same point.

As we know, this means that whenever the function f is differentiable at x = a, it
must also be the case that f is continuous at x = a. Proofs of conditionals like this
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are typically very difficult if we are only allowed to use Inference Rules 1.2.10 and Re-
placement Rules 1.3.9. Fortunately, in practice another inference rule is used. To prove
the differentiability result, what is usually done is that f is assumed to be differential
at x = a and then a series of steps that lead to the conclusion that f is continuous at
x = a are followed. We copy this strategy in our formal proofs using the next rule.
Sometimes known as conditional proof, this inference rule follows by Corollary 1.4.5
and Theorem 1.2.14.

INFERENCE RULE 1.4.6 [Direct Proof (DP)]

For propositional forms p0, p1,… , pn−1, q, r,
if p0, p1,… , pn−1, q ⊢ r, then p0, p1,… , pn−1 ⇒ q → r.

PROOF
Suppose p0, p1,… , pn−1, q ⊢ r. Then, by Corollary 1.4.5,

p0, p1,… , pn−1 ⊢ q → r.

Therefore, by Simp and Com,
p0 ∧ p1 ∧ · · · ∧ pn−1 ⊢ q → r,

so by Theorem 1.2.14,
p0 ∧ p1 ∧ · · · ∧ pn−1 ⇒ q → r.

Finally, we have by Conj and Theorem 1.2.14 that
p0, p1,… , pn−1 ⇒ q → r.

To see how this works, let us use direct proof to prove
P ∨Q→ (R ∧ S) ⊢ P → R.

To do this, we first prove
P ∨Q→ (R ∧ S), P ⊢ R.

Here is the proof:
1. P ∨Q→ (R ∧ S) Given
2. P Given
3. P ∨Q 2 Add
4. R ∧ S 1, 3 MP
5. R 4 Simp
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Therefore, by Inference Rule 1.4.6,
P ∨Q→ (R ∧ S)⇒ P → R.

A proof of the original deduction can now be written as
1. P ∨Q→ (R ∧ S) Given
2. P → R 1 DP

However, instead of writing the first proof off to the side, it is typically incorporated
into the proof as follows:

1. P ∨Q→ (R ∧ S) Given
2. →P Assumption
3. P ∨Q 2 Add
4. R ∧ S 1, 3 MP
5. R 4 Simp
6. P → R 2–5 DP

The proof that P infers R is a subproof of the main proof. To separate the proposi-
tional forms of the subproof from the rest of the proof, they are indented with a vertical
line. The line begins with the assumption of P in line 2 as an additional premise.
Hence, its reason is Assumption. This assumption can only be used in the subproof.
Consider it a local hypothesis. It is only used to prove P → R. If we were allowed to
use it in other places of the proof, we would be proving a theorem that had different
premises than those that were given. Similarly, all lines within the subproof cannot be
referenced from the outside. We use the indentation to isolate the assumption and the
propositional forms that follow from it. When we arrive at R, we know that we have
proved P → R. The next line is this propositional form. It is entered into the proof
with the reason DP. The lines that are referenced are the lines of the subproof.

EXAMPLE 1.4.7

Prove: P → ¬Q,¬R ∨ S ⊢ R ∨Q→ (P → S)

1. P → ¬Q Given
2. ¬R ∨ S Given
3. →R ∨Q Assumption
4. → P Assumption
5. ¬Q 1, 4 MP
6. Q ∨ R 3 Com
7. R 5, 6 DS
8. ¬¬R 7 DN
9. S 2, 8 DS
10. P → S 4–9 DP
11. (R ∨Q)→ (P → S) 3–10 DP
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EXAMPLE 1.4.8

Prove: P ∧Q→ R→ S,¬Q ∨ R ⊢ S

1. P ∧Q → R→ S Given
2. ¬Q ∨ R Given
3. → P ∧Q Assumption
4. Q ∧ P 3 Com
5. Q 4 Simp
6. ¬¬Q 5 DN
7. R 2, 6 DS
8. P ∧Q → R 3–7 DP
9. S 1, 8 MP

EXAMPLE 1.4.9

Prove: ⊢ P ∨ ¬P
1. →P Assumption
2. P → P 1 DP
3. ¬P ∨ P 2 Impl
4. P ∨ ¬P 3 Com

Note that lines 1–2 prove ⊢ P → P .

Indirect Proof

When direct proof is either too difficult or not appropriate, there is another common
approach to writing formal proofs. Sometimes going by the name of proof by contra-
diction or reductio ad absurdum, this inference rule can also be used to prove propo-
sitional forms that are not implications.

INFERENCE RULE 1.4.10 [Indirect Proof (IP)]

For all propositional forms p and q,
¬q → (p ∧ ¬p) ⇒ q.

PROOF
Notice that instead of repeating the argument from Example 1.4.9 in this proof,
the example is simply cited as the reason on line 2.

1. ¬q → (p ∧ ¬p) Given
2. p→ p Example 1.4.9
3. ¬(p ∧ ¬p) → ¬¬q 1 Contra
4. ¬(p ∧ ¬p) → q 3 DN
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5. ¬p ∨ ¬¬p → q 4 DeM
6. ¬p ∨ p→ q 5 DN
7. p→ p→ q 6 Impl
8. q 2, 7 MP

The rule follows from Theorem 1.2.14.
To use indirect proof, assume each premise and assume the negation of the con-

clusion. Then, proceed with the proof until a contradiction is reached. (In Inference
Rule 1.4.10, the contradiction is represented by p ∧ ¬p.) At this point, deduce the
original conclusion.

EXAMPLE 1.4.11

Prove: P ∨Q→ R,R ∨ S → ¬P ∧ T ⊢ ¬P .
1. P ∨Q→ R Given
2. R ∨ S → ¬P ∧ T Given
3. →¬¬P Assumption
4. P 3 DN
5. P ∨Q 4 Add
6. R 1, 5 MP
7. R ∨ S 6 Add
8. ¬P ∧ T 2, 7 MP
9. ¬P 8 Simp

10. P ∧ ¬P 4, 9 Conj
11. ¬P 3–10 IP

Since IP involves proving an implication, the formal proof takes the same form
as a proof involving DP.

Indirect proof can also be nested within another indirect subproof. As with direct proof,
we cannot appeal to lines within a subproof from outside of it.

EXAMPLE 1.4.12

Prove: P → Q ∧ R,Q→ S,¬P → S ⊢ S.
1. P → Q ∧ R Given
2. Q→ S Given
3. ¬P → S Given
4. →¬S Assumption
5. ¬Q 2, 4 MT
6. →P Assumption
7. Q ∧ R 1, 6 MP
8. Q 7 Simp
9. Q ∧ ¬Q 5, 8 Conj
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10. ¬P 6-9 IP
11. S 3, 10 MP
12. S ∧ ¬S 4, 11 Conj
13. S 4–12 IP

Notice that line 11 was not the end of the proof since it was within the first sub-
proof. It followed under the added hypothesis of ¬S.

EXAMPLE 1.4.13

Prove: P → R ⊢ P ∧Q → R ∨ S.
1. P → R Given
2. →P ∧Q Assumption
3. →¬R Assumption
4. ¬P 1, 3 MT
5. P 2 Simp
6. P ∧ ¬P 4, 5 Conj
7. R 3-6 IP
8. R ∨ S 7 Add
9. P ∧Q→ R ∨ S 2–8 DP

Exercises

1. Find all mistakes in the given proofs.
(a) “P ∨Q→ ¬R,R→ ¬Q→ S ∨Q ⊢ S”

Attempted Proof
1. P ∨Q→ ¬R Given
2. R→ ¬Q→ S ∨Q Given
3. →R Assumption
4. ¬¬R Assumption
5. ¬(P ∨Q) 1, 4 MT
6. ¬P ∧ ¬Q 5 DeM
7. ¬Q 6 Simp
8. R→ ¬Q 3–7 DP
9. S ∨Q 2, 8 MP
10. Q ∨ S 9 Com
11. S 7, 10 DS

(b) “¬P ∨Q ⊢ P → Q→ R”
Attempted Proof
1. ¬P ∨Q Given
2. →P Assumption
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3. ¬¬P 2 DN
4. Q 1, 3 DS
5. P → Q 2–4 DP
6. R MP
7. P → Q→ R 2–6 DP

(c) “¬R ∧ S,¬P ∨Q→ R ⊢ ¬P ∨Q→ Q”
Attempted Proof
1. ¬R ∧ S Given
2. ¬P ∨Q→ R Given
3. →¬P Assumption
4. →¬P ∨Q Assumption
5. R 2, 3 MP
6. ¬R 1 Simp
7. R ∧ ¬R 5, 6 Conj
8. P 4–7 IP
9. ¬¬P 8 DN
10. Q 4, 9 DS
11. ¬P ∨Q → Q 3–10 DP

2. Prove using direct proof.
(a) P → Q ∧ R ⊢ P → Q
(b) P ∨Q→ R ⊢ P → R
(c) P ∨ (Q ∨ R)→ S ⊢ Q→ S
(d) P → Q,R→ Q ⊢ P ∨ R→ Q
(e) P → Q, P → R ⊢ P → Q ∧ R
(f) P → (Q→ R) ⊢ Q ∧ ¬R → ¬P
(g) R→ ¬S ⊢ P ∧Q→ (R→ ¬S)
(h) P → (Q→ R) ⊢ Q→ (P → R)
(i) P → (Q→ R), Q→ (R→ S) ⊢ P → (Q→ S)
(j) P → (Q→ R), R→ S ∧ T ⊢ P → (Q→ T )
(k) P ↔ Q ∧ R ⊢ P → Q
(l) P ∧Q ∨ R→ Q ∧ R ⊢ P → (Q→ R)

3. Prove using indirect proof.
(a) P → Q, Q→ R, ¬R ⊢ ¬P
(b) P ∨Q ∧ R, P → S, Q → S ⊢ S
(c) P ∨Q ∧ ¬R, P → S, Q→ R ⊢ S
(d) P ⇔ Q, ¬P ⊢ ¬Q
(e) P ∨Q ∨ R→ Q ∧ R ⊢ ¬P ∨Q ∧ R
(f) P → Q, Q → R, S → T , P ∨ R, ¬R ⊢ T
(g) P → ¬Q, R→ ¬S, T → Q, U → S, P ∨ R ⊢ ¬T ∨ ¬U
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(h) P → Q ∧ R, Q ∨ S → T ∧ U , P ⊢ T

4. Prove using both direct and indirect proof.
(a) P → Q, P ∨ (R → S), ¬Q ⊢ R→ S
(b) P → ¬(Q→ ¬R) ⊢ P → R
(c) P → Q ⊢ P ∧ R→ Q
(d) P ⇔ Q ∨ R ⊢ Q → P

5. Prove by using direct proof to prove the contrapositive.
(a) P → Q, R→ S, S → T , ¬Q ⊢ ¬T → ¬(P ∨ R)
(b) P ∧Q ∨ R ∧ S ⊢ ¬S → P ∧Q
(c) P ∨Q→ ¬R, S → R ⊢ P → ¬S
(d) ¬P → ¬Q, (¬R ∨ S) ∧ (R ∨Q) ⊢ ¬S → P

6. Prove to complete the proof of Theorem 1.4.2.
(a) p ∨ q,¬p ⊢∗ q
(b) p, q ⊢∗ p ∧ q
(c) (p→ q) ∧ (r → s), p ∨ r ⊢∗ q ∨ s
(d) (p→ q) ∧ (r → s),¬q ∨ ¬s ⊢∗ ¬p ∨ ¬r
(e) p ∧ q ⊢∗ p

7. Given there is a proof of q from p with four propositional forms, prove ⊢ p → q.
Generalize the proof for n propositional forms.
8. Prove Corollary 1.4.5.
9. Can MP be replaced with another inference rule in Definition 1.4.1 and still have
Theorem 1.4.2 hold true? If so, find the inference rules.
10. Can any of the replacement rules be removed from Definition 1.4.1 and still have
Theorem 1.4.2 hold true? If so, how many can be removed and which ones?

1.5 THE THREE PROPERTIES

Wefinish our introduction to propositional logic by showing that this logical system has
three important properties. These are properties that are shared with Euclid’s geometry,
but they are not common to all logical systems.

Consistency

Since we can need to consider infinitely many propositional forms, we now write our
lists of propositional forms as

p0, p1, p2,… ,

allowing this sequence to be finite or infinite. Since proofs are finite, the notation
p0, p1, p2,… ⊢ q
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means that there exists a subsequence i0, i1,… , in−1 of 0, 1, 2,… such that
pi0 , pi1 ,… , pin−1 ⊢ q.

The notation
p0, p1, p2,… ⊬ q

means that no such subsequence exists.
DEFINITION 1.5.1

∙ The propositional forms p0, p1, p2,… are consistent if for every propositional
form q,

p0, p1, p2,… ⊬ q ∧ ¬q,

and we write Con(p0, p1, p2,…). Otherwise, p0, p1, p2,… is inconsistent.
∙ A logical system is consistent if no contradiction is a theorem.

We have two goals. The first is to show that propositional logic is consistent. The
second is to discover properties of sequences of consistent propositional forms that will
aid in proving other properties of propositional logic. The next theorem is important
to meet both of these goals. The equivalence of the first two parts is known as the
compactness theorem

THEOREM 1.5.2

If p0, p1, p2,… are propositional forms, the following are equivalent in proposi-
tional logic.

∙ Con(p0, p1, p2,…).
∙ Every finite subsequence of p0, p1, p2,… is consistent.
∙ There exists a propositional form p such that p0, p1, p2,… ⊬ p.

PROOF
We have three implications to prove.

∙ Suppose there is a finite subsequence pi0 , pi1 ,… , pin−1 that proves q ∧ ¬qfor some propositional form q. This implies that there is a formal proof of
q ∧ ¬q from p0, p1, p2,… , therefore, not Con(p0, p1, p2,…).

∙ Assume that p0, p1, p2,… proves every propositional form. In particular,
if we take a propositional form q, we have that p0, p1, p2,… ⊢ q∧¬q. This
means that there is a finite subsequence pi0 , pi1 ,… , pin−1 that proves q∧¬q.

∙ Lastly, assume that there exists a propositional form q such that
p0, p1, p2,… ⊢ q ∧ ¬q.
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Thismeans that there exist subscripts i0, i1,… , in−1 and propositional forms
r0, r1,… , rm−1 such that

pi0 , pi1 ,… , pin−1 , r0, r1,… , rm−1, q ∧ ¬q

is a proof. Take any propositional form p. Then,
pi0 , pi1 ,… , pin−1 , r0, r1,… , rm−1,¬p, q ∧ ¬q, p

is a proof of p by IP. Therefore, p0, p1, p2,… ⊢ p.
A sequence of propositional forms, such as P → Q, P ,Q, although consistent, has

the property that there are propositional forms that can be added to the sequence so that
the resulting list remains consistent. When the sequence can no longer take new forms
and remain consistent, we have arrived at a sequence that satisfies the next definition.

DEFINITION 1.5.3

A sequence of propositional forms p0, p1, p2,… ismaximally consistent when-
ever Con(p0, p1, p2,…) and for all propositional forms p, Con(p, p0, p1, p2,…)
implies that p = pi for some i.
It is a convenient result of propositional logic that every consistent sequence of

propositional forms can be extended to a maximally consistent sequence. This is pos-
sible because all possible propositional forms can be put into a list. Following Defini-
tion 1.1.2, we first list the propositional variables:

A, B, C, … X, Y , Z,
A0, A1, A2, …
B0, B1, B2, …
⋮ ⋮ ⋮
Z0, Z1, Z2, …

Then, we list all propositional forms with only one propositional variable:
¬A, ¬B, ¬C, … ¬X, ¬Y , ¬Z,
¬A0, ¬A1, ¬A2, …
¬B0, ¬B1, ¬B2, …
⋮ ⋮ ⋮

¬Z0, ¬Z1, ¬Z2, …

Next, we list all propositional forms with exactly two propositional variables starting
by writing A on the right:

A ∨ A, B ∨ A, C ∨ A, … X ∨ A, Y ∨ A, Z ∨ A,
A0 ∨ A, A1 ∨ A, A2 ∨ A, …
B0 ∨ A, B1 ∨ A, B2 ∨ A, …
⋮ ⋮ ⋮

Z0 ∨ A, Z1 ∨ A, Z2 ∨ A, …
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A ∧ A, B ∧ A, C ∧ A, … X ∧ A, Y ∧ A, Z ∧ A,
A0 ∧ A, A1 ∧ A, A2 ∧ A, …
B0 ∧ A, B1 ∧ A, B2 ∧ A, …
⋮ ⋮ ⋮

Z0 ∧ A, Z1 ∧ A, Z2 ∧ A, …

A→ A, B → A, C → A, … X → A, Y → A, Z → A,
A0 → A, A1 → A, A2 → A, …
B0 → A, B1 → A, B2 → A, …

⋮ ⋮ ⋮
Z0 → A, Z1 → A, Z2 → A, …

A↔ A, B ↔ A, C ↔ A, … X ↔ A, Y ↔ A, Z ↔ A,
A0 ↔ A, A1 ↔ A, A2 ↔ A, …
B0 ↔ A, B1 ↔ A, B2 ↔ A, …

⋮ ⋮ ⋮
Z0 ↔ A, Z1 ↔ A, Z2 ↔ A, …

After following the same pattern by attaching A on the left, we continue by writing
¬A on the right, and then on the left, and then we adjoin B and ¬B, etc., and then
use 3 propositional variables, and then four, etc. Following a careful path through this
infinite list, we arrive at a sequence

q0, q1, q2,…

of all propositional forms. We are now ready for the theorem.
THEOREM 1.5.4

A consistent sequence of propositional forms is a subsequence of a maximally
consistent sequence of propositional forms.

PROOF
Let p0, p1, p2,… be consistent and q0, q1, q2,… be a sequence of all propositional
forms. Define the sequence ri as follows:

∙ Let r0 = p0 and

r1 =

{

q0 if Con(q0, p0, p1, p2,…),
p0 otherwise,

so the sequence at this stage is p0, q0 or p0, p0. Both of these are consistent.
∙ Let r2 = p1 and

r3 =

{

q1 if Con(q1, r0, r1, r2, p0, p1, p2,…),
p1 otherwise.



Section 1.5 THE THREE PROPERTIES 55

At this stage, the sequence is still consistent and of the form r0, r1, p1, q1or r0, r1, p1, p1. The first sequence is consistent by the definition of r3, andthe second sequence is consistent because Con(r0, r1, p1).
∙ Generalizing, let r2k = pk and

r2k+1 =

{

qk if Con(qk, r0, r1,… , r2k, p0, p1, p2,…),
pk otherwise,

resulting in a consistent sequence of the form
r0, r1, r2, r3,… , pk, qk

or
r0, r1, r2, r3,… , pk, pk.

Since p0, p1, p3,… is a subsequence of r0, r1, r2,… , it only remains to show that
the new sequence is maximally consistent.

∙ Let s be a propositional form such that r0, r1, r2,… ⊢ s∧¬s. This implies
that there exists a sequence ij such that i0 < i1 < · · · < ik and

ri0 , ri1 ,… , rik ⊢ s ∧ ¬s,

but by Theorem 1.5.2, this is impossible because Con(r0, r1,… , rik ).
∙ Suppose that s is a propositional form so that Con(s, r0, r1, r2,…). Write
s = qi for some i. Therefore,

Con(qi, r0, r1,… , r2i, p0, p1, p2,…),

which means that s is a term of the sequence ri because qi was added at
step 2i + 1.

Soundness

We have defined two separate tracks in propositional logic. One track is used to assign
T or F to a propositional form, and thus it can be used to determine the truth value of
a proposition. The other track focused on developing methods by which one proposi-
tional form can be proved from other propositional forms. These methods are used to
write proofs in various fields of mathematics. The question arises whether these two
tracks have been defined in such a way that they get along with each other. In other
words, we want the propositional forms that we prove always to be assigned T, and
we want the propositional forms that we always assign T to be provable. This means
that we want semantic methods to yield syntactic results and syntactic methods to yield
semantic results.



56 Chapter 1 PROPOSITIONAL LOGIC

The statement form
is a theorem.

Sound

Complete

The statement form
is a tautology.

Figure 1.4 Sound and complete logics.

DEFINITION 1.5.5

∙ A logic is sound if every theorem is a tautology.
∙ A logic is complete if every tautology is a theorem.

There is no guarantee that the construction of the two tracks for a logic will have these
two properties (Figure 1.4), but it does in the case of propositional logic.

To prove that propositional logic is sound, we need three lemmas. The proof of the
first is left to Exercise 1.

LEMMA 1.5.6

The propositional forms of Axioms 1.2.8 are tautologies.

LEMMA 1.5.7

Let p, q, and r be propositional forms.
∙ If p⇒ r, then p→ r is a tautology.
∙ If p, q ⇒ r, then p ∧ q → r is a tautology.

PROOF
This is simply a matter of checking Inference Rules 1.2.10 and 1.3.10.

For example, to check the theorem for De Morgan’s law, we must show that
¬(p ∧ q)→ ¬p ∨ ¬q

and
¬p ∨ ¬q → ¬(p ∧ q)

are tautologies. To do this, examine the truth table
p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q ¬(p ∧ q)→ ¬p ∨ ¬q ¬p ∨ ¬q → ¬(p ∧ q)
T T T F F F F T T
T F F T F T T T T
F T F T T F T T T
F F F T T T T T T
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We also have to show that
¬(p ∨ q)→ ¬p ∧ ¬q

and
¬p ∧ ¬q → ¬(p ∨ q)

are tautologies.
As another example, to check that the disjunctive syllogism leads to an impli-

cation that is a tautology, examining the truth table:
p q p ∨ q ¬p (p ∨ q) ∧ ¬p (p ∨ q) ∧ ¬p → q
T T T F F T
T F T F F T
F T T T T T
F F F T F T

The other rules are checked similarly (Exercise 2).

LEMMA 1.5.8

If p→ q and p are tautologies, then q is a tautology.
PROOF

This is done by examining the truth table of p → q (page 12) where we see that
v(q) is constant and equal to T because v(p) and v(p → q) are constant and both
equal to T.

We now prove the first important property of propositional logic.
THEOREM 1.5.9 [Soundness]

Every theorem of propositional logic is a tautology.
PROOF

Let p be a theorem. Let p0, p1,… , pn−1 be propositional forms such that
p0, p1,… , pn−1

is a proof for p such that p1 is an axiom, pi with i > 0 is an axiom or follows
by a rule of inference, and pn−1 = p (Definition 1.2.13). We now examine the
propositional forms of the proof.

∙ By Lemma 1.5.6, p0 is a tautology.
∙ The propositional form p1 is a tautology for one of two reasons. If p1 isan axiom, it is a tautology (Lemma 1.5.6). If it follows from p0 because
p0 ⇒ p1, then p0 → p1 is a tautology (Lemma 1.5.7), so p1 is a tautologyby Lemma 1.5.8.



58 Chapter 1 PROPOSITIONAL LOGIC

∙ If p2 follows from p0 or p1, reason as in the previous case. Suppose p0, p1 ⇒
p2. Then, by Lemma 1.5.7, (p0 ∧ p1) → p2 is a tautology. Because
p0, p1 ⇒ p0 ∧ p1 by Conj, p0 ∧ p1 is a tautology. Thus, p2 is a tautology byLemma 1.5.8.

Since every pi with i > 0 is an axiom, follows from some pj with j < i, or followsfrom some pj , pk with j, k < i, continuing in this manner, we find after finitely
many steps that p is a tautology.

COROLLARY 1.5.10

For all propositional forms p0, p1,… , pn−1, q,
if p0, p1,… , pn−1 ⊢ q, then p0, p1,… , pn−1 ⊨ q.

The Law of Noncontradiction being a theorem of propositional logic (page 37) suggests
that we have the following result, which is the second important property of proposi-
tional logic.

COROLLARY 1.5.11

Propositional logic is consistent.
PROOF

Let p be a propositional form. Suppose that p∧¬p is a theorem. This implies that
it is a tautology by the soundness theorem (1.5.9), but p ∧ ¬p is a contradiction.

Completeness

We use the consistency of propositional logic to prove that propositional logic is com-
plete. For this we need a few lemmas.

LEMMA 1.5.12

If not Con(¬q, p0, p1, p2,…), then p0, p1, p2,… ⊢ q.
PROOF

If not Con(p0, p1, p2,…), then p0, p1, p2,… ⊢ q by Theorem 1.5.2, so suppose
Con(p0, p1, p2,…). Assume that there exists a propositional form r such that

¬q, p0, p1, p2,… ⊢ r ∧ ¬r.

This implies that there exists a formal proof
pi0 , pi1 ,… , pin−1 ,¬q, s0, s1,… , sm−1, r ∧ ¬r, (1.10)

where ¬q is in the proof because Con(p0, p1, p2,…). Then,
pi0 , pi1 ,… , pin−1 , q
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is a proof, where q follows by IP with (1.10) as the subproof. Therefore,
p0, p1, p2,… ⊢ q.

LEMMA 1.5.13

If p0, p1, p2,… are maximally consistent, then for every propositional form q,
either q = pi or ¬q = pi for some i.

PROOF
Since p0, p1, p2,… are consistent, both q and ¬q cannot be terms of the sequence.
Suppose that it is ¬q that is not in the list. By the definition of maximal con-
sistency, we conclude that ¬q, p0, p1, p2,… are not consistent. Therefore, by
Lemma 1.5.12, we conclude that p0, p1, p2,… ⊢ q, and since the sequence is
maximally consistent, q = pi for some i.
To prove the next lemma, we use a technique called induction on propositional

forms. It states that a property will hold true for all propositional forms if two condi-
tions are met:

∙ The property holds for all propositional variables.
∙ If the property holds for p and q, the property holds for ¬p, p ∧ q, p ∨ q, p → q,
and p↔ q.

In proving the second condition, we first assume that
the property holds for the propositional forms p and q. (1.11)

This assumption (1.11) is known as an induction hypothesis. Because
p ∨ q ⇔ ¬p→ q,

p ∧ q ⇔ ¬(p→ ¬q),

and
p↔ q ⇔ (p→ ¬q)→ ¬(¬p→ q),

we need only to show that the induction hypothesis implies that the property holds for
¬p and p→ q.

LEMMA 1.5.14

If Con(p0, p1, p2,…), there exists a valuation v such that
v(p) = T if and only if p = pi

for some i = 0, 1, 2,… .
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PROOF
Since Con(p0, p1, p2,…), we know that

p0, p1, p2,… (1.12)
can be extended to a maximally consistent sequence of propositional forms by
Theorem 1.5.4. If we find the desired valuation for the extended sequence, that
valuation will also work for the original sequence, so assume that (1.12) is max-
imally consistent. Let X0, X1, X2,… represent all of the possible propositional
variables (page 53). Define

v(Xj) =

{

T if Xj is a propositional variable of pi for some i,
F otherwise.

We prove that this is the desired valuation by induction on propositional forms.
We first claim that for all j,

v(Xj) = T if and only if Xj = pi for some i.
To prove this, first note that ifXj is a term of (1.12), then v(Xj) = T by definition
of v. To show the converse, suppose that v(Xj) = T but Xj is not a term of
(1.12). By Lemma 1.5.13, there exists i such that ¬Xj = pi. This implies that
v(¬Xj) = T, and then v(Xj) = F (Definition 1.1.9), a contradiction.

Now assume that
v(q) = T if and only if q = pi for some i

and
v(r) = T if and only if r = pi for some i.

We first prove that
v(¬q) = T if and only if ¬q = pi for some i.

∙ Suppose that v(¬q) = T. Then, v(q) = F, and by induction, q is not
in (1.12). Since p0, p1, p2,… is maximally consistent, ¬q is in the list
(Lemma 1.5.13).

∙ Conversely, let ¬q = pi for some i. By consistency, q is not in the se-
quence. Therefore, by the induction hypothesis, v(q) = F, which implies
that v(¬q) = T.

We next prove that
v(q → r) = T if and only if q → r = pi for some i.

∙ Assume that v(q → r) = T. We have two cases to check. First, let
v(q) = v(r) = T, so both q and r are in (1.12) by the induction hypoth-
esis. Suppose q → r is not a term of the sequence. This implies that its
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negation ¬(q → r) is a term of the sequence by Lemma 1.5.13. Therefore,
q ∧ ¬r is in the sequence by maximal consistency, so ¬r is also in the se-
quence, a contradiction. Second, let v(q) = F. By induction, q is not a term
of the sequence, which implies that ¬q is a term. Hence, ¬q ∨ r is in the
sequence, which implies that q → r is also in the sequence.

∙ To prove the converse, suppose that q → r = pi for some i. Assume
v(q → r) = F. This means that v(q) = T and v(r) = F. Therefore, by
induction, q is a term of the sequence but r is not. This implies that ¬r
is in the sequence, so ¬q is in the sequence by MT. This contradicts the
consistency of (1.12).

THEOREM 1.5.15 [Completeness]

Every tautology of propositional logic is a theorem.
PROOF

Let p be a propositional form such that FL1,FL2,FL3 ⊬ p. By Lemma 1.5.12,
Con(FL1,FL2,FL3,¬p). Therefore, by Lemma 1.5.14, there exists a valuation
such that v(p) = F, which implies that ̸⊨ p.

COROLLARY 1.5.16

If p0, p1, p2,… ⊨ q, then p0, p1, p2 ⊢ q for all propositional forms p0, p1, p2,… .
We conclude by Theorems 1.5.9 and 1.5.15 and their corollaries that the notions

of semantically valid and syntactically valid coincide for deductions in propositional
logic.
Exercises

1. Prove Lemma 1.5.6.
2. Provide the remaining parts of the proof of Lemma 1.5.7.
3. Let p, p0, p1, p2,… be propositional forms. Prove the following.

(a) If p0, p1, p2, · · · ⊬ p, then Con(¬p, p0, p1, p2,…).
(b) If Con(p0, p1, p2,…) and p0, p1, p2, · · · ⊢ p, then Con(p, p0, p1, p2,…).
(c) If Con(p0, p1, p2,…), then Con(p, p0, p1, p2,…) or Con(¬p, p0, p1, p2,…).

4. Let p0, p1, p2,… be a maximally consistent sequence of propositional forms. Let p
and q be propositional forms. Prove the following.

(a) If p0, p1, p2, · · · ⊢ p, then p = pk for some k.
(b) p ∧ q = pk for some k if and only if p = pi and q = pj for some i and j.
(c) If (p→ q) = pi and p = pj for some i and j, then q = pk for some k.

5. Use truth tables to prove the following. Explain why this is a legitimate technique.
(a) ¬Q ∨ (¬R ∨ ¬P ) ⊢ P → ¬(Q ∧ R)
(b) P ∨Q→ R ⊢ ¬R→ ¬Q
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(c) P → ¬(Q→ R) ⊢ P → ¬R
(d) P ↔ Q ∨ R ⊢ Q→ P
(e) P ∨Q→ R ∧ S,¬P → (T → ¬T ),¬R ⊢ ¬T

6. Write a formal proof to show the following. Explain why this is a legitimate tech-
nique.

(a) ¬P ∨Q,¬Q ⊨ ¬P
(b) ¬(P ∧Q), P ⊨ ¬Q
(c) P → Q, P ⊨ Q ∨ R
(d) P → Q,Q→ R, P ⊨ R
(e) P ∨Q ∧ R,¬P ⊨ R

7. Write a formal proof to show the following.
(a) ¬(P ∧Q) ̸⊨ ¬P
(b) (P → Q) ∨ (R → S), P ∨ R ̸⊨ Q ∨ S
(c) P ∨ R,Q ∨ S,R↔ S ̸⊨ R ∧ S

8. Write a formal proof to demonstrate the following.
(a) p ∨ ¬p is a tautology.
(b) p ∧ ¬p is a contradiction.

9. Modify propositional logic by removing all replacement rules (1.3.9). Is the result-
ing logic consistent? sound? complete?
10. Modify propositional logic by removing all inference rules (1.2.10) except for In-
ference Rule 1.3.10. Is the resulting logic consistent? sound? complete?



CHAPTER 2

FIRST-ORDER LOGIC

2.1 LANGUAGES

We developed propositional logic to model basic proof and truth. We did so by us-
ing propositional forms to represent sentences that were either true or false. We saw
that propositional logic is consistent, sound, and complete. However, the sentences
of mathematics involve ideas that cannot be fully represented in propositional logic.
These sentences are able to characterize objects, such as numbers or geometric figures,
by describing properties of the objects, such as being even or being a rectangle, and
the relationships between them, such as equality or congruence. Since propositional
logic is not well suited to handle these ideas, we extend propositional logic to a richer
system.

Predicates

Consider the sentence it is a real number. This sentence has no truth value because the
meaning of the word it is undetermined. As noted on page 3, the word it is like a gap
in the sentence. It is as if the sentence was written as
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is a real number.

However, that gap can be filled. Let us make some substitutions for it:
5 is a real number.
�∕7 is a real number.
Fido is a real number.

My niece’s toy is a real number.

With each replacement, the word that is undetermined is given meaning, and then the
sentence has a truth value. In the examples, the first two propositions are true, and the
last two are false.

Notice that changes, whereas is a real number remains fixed. This is because
these two parts of the sentence have different purposes. The first is a reference to an
object, and the second is a property of the object. What we did in the examples was to
choose a property and then test whether various objects have that property:

It is a real number.
↑

5 is a real number. True
�∕7 is a real number. True
Fido is a real number. False

My niece’s toy is a real number. False
Depending on the result, these two parts are put together to form a sentence that either
accurately or inaccurately affirms that a particular property is an attribute of an object.
For example, the first sentence states that being a real number is a characteristic of 5,
which is correct, and the last sentence states that being a real number is a characteristic
of my niece’s toy, which is not correct. We have terminology for all of this.

∙ The subject of a sentence is the expression that refers to an object.
∙ The predicate of a sentence is the expression that ascribes a property to the object
identified by the subject.

Thus, 5, �∕7, Fido, and my niece’s toy are subjects that are substituted for it, and is a
real number is a predicate.

Substituting for the subject but not substituting for the predicate is a restriction that
we make. We limit the extension of propositional logic this way because it is to be part
of mathematical logic and this is what we do in mathematics. For example, take the
sentence,

x + 2 = 7.

On its own it has no truth value, but when we substitute x = 5 or x = 10, the sentence
becomes a proposition. In this sense, x + 2 = 7 is like it is a real number. Both
the sentences have a gap that is assigned a meaning giving the sentence a truth value.
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However, the mathematical sentence is different from the English sentence in that it is
unclear as to what part is the subject. Is it x or x + 2? For our purposes, the answer is
irrelevant. This is because in mathematical logic, the subject is replaced with a variable
or, sometimes, with multiple variables. This change leads to a modification of what a
predicate is.

DEFINITION 2.1.1

A predicate is an expression that ascribes a property to the objects identified by
the variables of the sentence.
Therefore, the sentence x + 2 = 7 is a predicate. It describes a characteristic of x.

When expressions are substituted for x, the resulting sentence will be either a propo-
sition that affirms that the value added to 2 equals 5 or another predicate. If x = 5 is
substituted, the result is the true proposition 5+2 = 7. That is, x+2 = 7 is satisfied by
5. If x = 10 and the substitution is made, the resulting proposition 10+2 = 7 is false. In
mathematics, it is also common to substitute with undetermined values. For example,
if the substitution is x = y, the result is the predicate y + 2 = 7, and if the substitution
is x = sin �, the result is the predicate sin � + 2 = 7. Substituting x = y + 2z2 yields
y + 2z2 + 2 = 7, a predicate with multiple variables. If we substitute x = y2 − 7y, the
result is y2 − 7y + 2 = 7, which is a predicate with multiple occurrences of the same
variable.

Assume that x represents a real number and consider the sentence
there exists x such that x + 2 = 7. (2.1)

Although there is a variable with 2 occurrences, the sentence is a proposition, so in
propositional logic, it is an atom and would be represented by P . This does not tell us
much about the sentence, so we instead break the sentence into two parts:

Quantifier Predicate
↓ ↓

there exists x such that x + 2 = 7

A quantifier indicates how many objects satisfy the sentence. In this case, the quanti-
fier is the existential quantifier, making the sentence an existential proposition. Such
a proposition claims that there is at least one object that satisfies the predicate. In par-
ticular, although other sentences mean the same as (2.1) assuming that x represents a
real number, such as

there exists a real number x such that x + 2 = 7,

x + 2 = 7 for some real number x,

and
some real number x satisfies x + 2 = 7,

they all claim along with (2.1) that there is a real number x such that x + 2 = 7. This
is true because 5 satisfies x + 2 = 7 (Figure 2.1).
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The real numbers
1

2

3

4 5

Satisfies x + 2 = 7

There is at least one object that satisfies x + 2 = 7. Therefore,
there exists a real number x such that x + 2 = 7 is true.

Figure 2.1

Again, assume that x is a real number. The sentence
for all x, x + 5 = 5 + x (2.2)

claims that x + 5 = 5 + x is true for every real number x. To see this, break (2.2) like
(2.1):

Quantifier Predicate
↓ ↓

for all x , x + 5 = 5 + x

This quantifier is called the universal quantifier. It states that the predicate is satisfied
by each and every object. Including propositions that have the same meaning as (2.2),
such as

for all real numbers x, x + 5 = 5 + x,

and
x + 5 = 5 + x for every real number x,

(2.2) is true because each substitution of a real number for x satisfies the predicate
(Figure 2.2). These are examples of universal propositions,.

A proposition can have multiple quantifiers. Take the equation y = 2x2 + 1. Before
we learned the various techniques that make graphing this equation simple, we graphed
it by writing a table with one column holding the x values and another holding the y
values. We then chose numbers to substitute for x and calculated the corresponding y.
Although we did not explicitly write it this way, we learned that

for every real number x,
there exists a real number y such that y = 2x2 + 1. (2.3)

This is a universal proposition, and its predicate is
there exists a real number y such that y = 2x2 + 1.
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The real numbers
1

2

3

4 5

Satisfies x + 5 = 5 + x

Every object satisfies x + 5 = 5 + x. Therefore,
for all real numbers x, x + 5 = 5 + x is true.

Figure 2.2

We conclude that (2.3) is true because whenever x is replaced with any real number,
there is a real number y that satisfies y = 2x2 + 1.

The symbolic logic that we define in this chapter is intended to model propositions
that have a predicate and possibly a quantifier. As with propositional logic, an alphabet
and a grammar will be chosen that enable us to write down the appropriate symbols
to represent these sentences. Unlike propositional logic where we worked on both its
syntax and semantics at the same time, this logic starts with a study only of its syntax.

Alphabets

Nomatter what mathematical subject we study, whether it is algebra, number theory, or
something else, we can write our conclusions as propositions. These sentences usually
involve mathematical symbols particular to the subject being studied. For example,
both (2.1) and (2.2) are algebraic propositions. We know this because we recognize
the symbols from algebra class. For this reason, the symbolic logic that we define will
consist of two types of symbols.

DEFINITION 2.1.2

Logic symbols consist of the following:
∙ Variable symbols: Sometimes simply referred to as variables, these sym-
bols serve as placeholders. On their own, they are without meaning but
can be replaced with symbols that do have meaning. A common example
are the variable symbols in an algebraic equation. Variable symbols can
be lowercase English letters x, y, and z, or lowercase English letters with
subscripts, xn, yn, and zn. Depending on the context, variable symbols are
sometimes expanded to include uppercase English letters, with or without
subscripts, as well as Greek and Hebrew letters. Denote the collection of
variable symbols by VAR.

∙ Connectives: ¬,∧,∨,→,↔
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∙ Quantifier symbols: ∀, ∃

∙ Equality symbol: =

∙ Grouping symbols: (, ), [, ], {, }
Theory symbols consist of the following:

∙ Constant symbols: These are used to represent important objects in the
subject that do not change. Common constant symbols are 0 and e.

∙ N-ary function symbols: The term n-ary refers to the number of argu-
ments. For example, these symbols can represent unary functions that
take one argument such as cosine or binary functions such as multiplica-
tion that take two arguments.

∙ N-ary relation symbols: These symbols are used to represent relations.
For example, < represents the binary relation of less than and R can rep-
resent the unary relation is an even number.

It is not necessary to choose any theory symbols. However, if there are any, the-
ory symbols must be chosen so that they are not connectives, quantifier symbols,
the equality symbol, or grouping symbols, and the selection of theory symbols
has precedence over the selection of variable symbols. This means that these two
collections must have no common symbols. Moreover, although this is not the
case in general, we assume that the logic symbols that are not variable symbols
will be the same for all applications. On the other hand, theory symbols (if there
are any) vary depending on the current subject of study. A collection of all logic
symbols and any theory symbols is called a first-order alphabet and is denoted
by A.
The term theory refers to a collection of propositions all surrounding a particular

subject. Since different theories have different notation (think about how algebraic
notation differs from geometric notation), alphabets change depending on the subject
matter. Let us then consider the alphabets for a number of theories that will be intro-
duced later in the text. The foundational theory is the first example.

EXAMPLE 2.1.3

Set theory is the study of collections of objects. The ∈ is the only relation sym-
bol, and it is binary. It has no other theory symbols. The theory symbols of set
theory are denoted by ST and are summarized in the following table.

ST
Constant symbols Function symbols Relation symbol

∈
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EXAMPLE 2.1.4

Number theory is the study of the natural numbers. The symbols + and ⋅ rep-
resent regular addition and multiplication, respectively. As such they are binary
function symbols. These and its other theory symbols are indicated in the fol-
lowing table and are denoted by NT.

NT
Constant symbols Function symbols Relation symbols

0 1 + ⋅

Another approach to number theory is called Peano arithmetic (Peano 1889).
It is the study of the natural numbers using Peano’s axioms. It has a constant
symbol 0 and a unary function symbol S. Denote these symbols by AR.

AR
Constant symbol Function symbol Relation symbols

0 S

The Peano arithmetic symbols are sometimes extended to include symbols for
the operations of addition and multiplication and the less-than relation. Denote
this extended collection by AR′.

AR′
Constant symbol Function symbols Relation symbol

0 S + ⋅ <

EXAMPLE 2.1.5

Group theory is the study of groups. A group is a set with an operation that satis-
fies certain properties. Typically, the operation is denoted by the binary function
symbol ◦. There is also a constant represented by e. Ring theory is the study
of rings. A ring is a set with two operations that satisfy certain properties. The
operations are usually denoted by the binary function symbols ⊕ and ⊗. The
constant symbol is ○. These collections of theory symbols are denoted by GR
and RI, respectively, and are summarized in the following tables.

GR
Constant symbol Function symbol Relation symbols

e ◦

RI
Constant symbols Function symbols Relation symbol

○ ⊕ ⊗

Field theory is the study of fields. A field is a type of ring with extra properties,
so the theory symbols RI can be used to write about fields. However, if an order is
defined on a field, a binary relation symbol is needed, and the result is the theory
of ordered fields. Denote these symbols by OF.

OF
Constant symbol Function symbols Relation symbol

○ ⊕ ⊗ <

Notice that the collections of theory symbols in the previous examples had at most
two constant symbols. This is typical since subjects of study usually have only a few
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objects that require special recognition. However, there will be times when some extra
constants are needed to reference objects that may or may not be named by the constant
theory symbols. To handle these situations, we expand the given theory symbols by
adding new constant symbols.

DEFINITION 2.1.6

Let A be a first-order alphabet with theory symbols S. When constant symbols
not in S are combined with the symbols of S, the resulting collection of theory
symbols is denoted by S. The number of new constant symbols varies depending
on need.

For example, suppose that we are working in a situation where we need four constant
symbols in addition to the ones in OF. Denote these new symbols by c1, c2, c3, and c4.
Then, OF consists of these four constant symbols and the symbols from OF.

Terms

For a string to represent a proposition or a predicate from a particular theory, each
nonlogic symbol of the string must be a theory symbol of that subject. For example,

∀x(∈xA)

and
∨∃ ∈ ab4{} ∧ x¬y

are strings for set theory. However, some strings have a reasonable chance of being
given meaning, others do not. As with propositional logic, we need a grammar that
will determine which strings are legal for the logic. Because a predicate might have
variables, the types of representations that we want to make are more complicated than
those of propositional logic. Hence, the grammar also will be more complicated. We
begin with the next inductive definition (compare page 59).

DEFINITION 2.1.7

Let A be a first-order alphabet with theory symbols S. An S-term is a string over
A such that

∙ a variable symbol from A is an S-term,
∙ a constant symbol from S is an S-term,
∙ ft0t1 · · · tn−1 is an S-term if t0, t1,… , tn−1 are S-terms and f is a function
symbol from S.

Denote the collection of strings over A that are S-terms by TERMS(A).
The string ft0t1 · · · tn−1 is often written as f (t0, t1,… , tn−1) because it is common to
write functions using this notation. We must remember, however, that this notation can
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always be replaced with the notation of Definition 2.1.7. Furthermore, when writing
about a general S-term where it is not important to mention S, we often simply write
using the word term without the S. We will follow this convention when writing about
similar definitions that require the theory symbols S.

EXAMPLE 2.1.8

Here are examples of terms for each of the indicated theories. Assume that x, y
and z1 are variable symbols.

∙ 0 [Peano arithmetic]
∙ +xy [number theory]
∙ ◦0z1 [group theory].

The string+xy is typically written as x+y, and the string ◦0a1 is typically written
as 0 ◦ a1. If NT is expanded to NT by adding the constants c and d, then +cd is
an NT-term.

As suggested by Example 2.1.8, the purpose of a term is to represent an object of study.
A variable symbol represents an undetermined object. A constant symbol represents an
object that does not change, such as a number. A function symbol is used to represent
a particular object given another object. For example, the NT-term +x2 represents the
number that is obtained when x is added to 2.

Formulas

As propositional forms are used to symbolize propositions, the next definition is the
grammar used to represent propositional forms and predicates. The definition is given
inductively and resembles the parentheses-lessprefix notation invented by Łukasiewicz
(1951) in the early 1920s.

DEFINITION 2.1.9

Let S be the theory symbols from a first-order alphabet A. An S-formula is a
string over A such that

∙ t0 = t1 is an S-formula if t0 and t1 are S-terms.
∙ Rt0t1 · · · tn−1 is an S-formula if R is an n-ary relation symbol from S and
t0, t1,… , tn−1 are S-terms.

∙ ¬p is an S-formula if p is an S-formula.
∙ p ∧ q, p ∨ q, p→ q, and p↔ q are S-formulas if p and q are S-formulas.
∙ ∀xp and ∃xp are S-formulas if p is an S-formula and x is a variable symbol
from A.
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The string Rt0t1 · · · tn−1 is often represented as R(t0, t1,… , tn−1). A formula of
the form ∀xp is called a universal formula, and a formula of the form ∃xp is an
existential formula. Parentheses can be used around an S-formula for readabil-
ity, especially when quantifier symbols are involved. For example, ∀x∃yp is the
same formula as ∀x(∃yp) and ∀x∃y(p).

EXAMPLE 2.1.10

Let x and y be variable symbols. Let c be a constant symbol; f , g, and ℎ be unary
function symbols; and R be a binary relation symbol from S. The following are
S-formulas.

∙ x = c

∙ Rcfy

∙ ¬(y = gc)

∙ Rxfx→ Rfxx

∙ ∀x¬(fx = fc)

∙ ∃x∀y(Rfxgy ∧ Rfxℎy).
In practice, Rcfy is usually written as R(c, f (y)), ¬(y = gc) as y ≠ g(c), Rxfx
as R(x, f (x)), Rfxx as R(f (x), x), and Rfxgy as R(f (x), g(y)).

EXAMPLE 2.1.11

These are some ST-formulas with their standard translations.
∙ ¬ ∈x{ }
x is not an element of { }.

∙ ∀x(∈xA→ ∈xB)
For all x, if x ∈ A, then x ∈ B.

∙ ¬∃x∀y(∈yx)
It is not the case that there exists x such that for all y, y ∈ x.

∙ x = y ∨ ∈yx ∨ ∈xy
x = y or y ∈ x or x ∈ y.

EXAMPLE 2.1.12

Here are some NT-formulas with their corresponding predicates.
∙ ∀x∀y∀z [++xyz = +x+yz]
(x + y) + z = x + (y + z) for all x, y, and z.

∙ ¬(x = 0)→ ∀y∃z(z = ⋅xy)
If x ≠ 0, then for all y, there exists z such that z = xy.
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∙ ∀x(⋅1x = x)
For all x, 1x = x.

We now name the system just developed.
DEFINITION 2.1.13

An alphabet combined with a grammar is called a language. The language given
by Definitions 2.1.2 and 2.1.9 is known as a first-order language. A formula
of a first-order language is a first-order formula, and all of the formulas of the
first-order language with theory symbols S is denoted by L(S).
The first-order language developed to represent predicates, either with quantifiers

or without them, is summarized in Figure 2.3. An alphabet that has both logic and
theory symbols is chosen. Using a grammar, terms are defined, and then by extending
the grammar, formulas are defined. A natural question to ask regarding this system is
what makes it first-order? Look at the last part of Definition 2.1.9. It gives the rule that
allows the addition of a quantifier symbol in a formula. Only ∀x or ∃x are permitted,
where x is a variable symbol representing an object of study. Thus, only propositions
that begin as for all x . . . or there exists x such that . . . can be represented as a first-
order formula. To quantify over function and relation symbols, we need to define a
second-order formula. Augment the alphabet A with function and relation symbols,
which creates what is know as a second-order alphabet, and then add

∀fp and ∃fp are S-formulas if p is an S-formula
and f is a function symbol from A

and
∀Rp and ∃Rp are S-formulas if p is an S-formula

and R is a relation symbol from A

to Definition 2.1.9. For example, if the first-order formula
∀x(∈xA→∈xB)

is intended to be true for any A and B, it can be written as the second-order formula
∀A∀B∀x(Ax→ Bx),

where Ax represents the relation x ∈ A and Bx represents the relation x ∈ B.

Logic symbols

Theory symbols
Terms Formulas

Grammar Grammar

Alphabet
Represent

objects
Properties
of objects

Figure 2.3 A first-order language.
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Exercises

1. Determine whether the given strings areGR-terms. If a string is not aGR-term, find
all issues that prevent it from being one.

(a) 2e
(b) xy◦
(c) ◦
(d) <xe
(e) ◦◦xye

2. Write the GR-terms from Exercise 1 in their usual form (Example 2.1.10).
3. Extend ST to ST′ by adding the constant symbol ∅ and the unary function symbol
P. Determine whether the given strings are ST′-terms. If a string is not a ST′-term,
find all issues that prevent it from being one.

(a) ∈x∅
(b) ∅
(c) x
(d) P∈xy
(e) Px

4. Determine whether the given strings are OF-formulas. If a given string is not a
OF-formula, find all issues that prevent it from being one.

(a) < ⊕xy⊗xy
(b) ⊕x = ⊗y
(c) ∀x∃y(+xy = 0)
(d) ∀x∀y(⊗xy = ⊕yx)→ <xy
(e) ¬(<⊗xy ∧⊕xy)↔ ∀u∀v(<⊗xy⊕uv)

5. Write the RI-formulas from Exercise 4 in their usual form.
6. Extend ST to ST′′ by adding the constant symbol ∅ and the binary relation symbol
R. Determine whether the given strings are ST′′-formulas. If a given string is not a
ST′′-formula, find all issues that prevent it from being one.

(a) Rx∅ ∨ ∈xy
(b) Rx∅→ ∈+xyz
(c) ∀x∃∅(¬∈x∅)
(d) ∀x ∨ ∀y ∨ ∀z(∈∅xyz) ∨ ∈∅∅
(e) [∃x(Rx∅)→ ∃u∃v∃w(¬∈uv↔ ¬∈uw)] ∨∅ = x1

7. Write the ST′′-formulas from Exercise 6 in their usual form.
8. Translate the given sentence to an S-formula for the given theory symbol.

(a) For all x, S(x) ≠ 0. (S = AR)
(b) For every number x, there is a number y such that x ◦ y = e. (S = GR)
(c) If x < y and y < z, then x < z. (S = OF)
(d) It is false that x ∈ y, y ∈ z, and z ∈ x for all x, y, and z. (S = ST)
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(e) For every u and v, there exists w such that if u = v, then u + w = v + w.
(S = RI and + should be translated as⊕ in the RI-formula.)

9. Extend NT to NT′ by adding the numerals 2, 3,… , 9. Answer the following ques-
tions.

(a) Is +34 = 7 a NT′-term? Explain.
(b) Is ⋅4+39 a NT′-term? Explain.
(c) Is ∃x(+⋅4x8 = +3x) a NT′-formula? If it is, find x.
(d) If possible, give an example of a NT-formula that is not a NT′-formula.
(e) If possible, give an example of a NT′-formula that is not a NT-formula.

2.2 SUBSTITUTION

As noted in the beginning of Section 2.1, there are times when a substitution will be
made for a predicate’s variable. For example, in algebra, if f (x) = 3x2 + x + 1, then
f (y) = 3y2 + y + 1, f (2) = 3(2)2 + 2 + 1, and f (sin x) = 3 sin2 x + sin x + 1. That is,
we can substitute with variables, constants, and the results from functions. Therefore,
to represent this in formulas, we can replace a variable with a term.

Terms

We begin by defining what it means to substitute for a variable in a term. We use ⇔
because one string can be replaced with the other string.

DEFINITION 2.2.1 [Substitution in Terms]

Let S be theory symbols from a first-order alphabetA. Let x be a variable symbol
from A and t be an S-term. The notation

t
x

means that x is replaced with t at every appropriate occurrence of x. For terms,
this means the following.

∙ If y is a variable symbol from A,

y t
x
⇔

{

t if x = y,
y if x ≠ y.

∙ If c is a constant symbol from S,
c t
x
⇔ c.

∙ If f is an n-ary function symbol from S and s0, s1,… , sn−1 are S-terms,
(fs0s1 · · · sn−1)

t
x
⇔ f

(

s0
t
x
s1
t
x
· · · sn−1

t
x

)

.
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Observe that when a substitution of a term is made into a term, the result is another
term.

EXAMPLE 2.2.2

Let x, y, and z be distinct variable symbols; c and d be constant symbols; f be
a binary function symbol; and g and ℎ be unary function symbols. This means
that fcggd is typically written as f (c, g(g(d))).

∙ x
y
x
⇔ y

∙ x c
x
⇔ c

∙ y
fxz
x

⇔ y

∙ c x
x
⇔ c

∙ d c
x
⇔ d

∙ c
gx
x

⇔ c

∙ (fxy) c
y
⇔ fxc

∙
(

(fyz)ℎc
y

)

gy
x

⇔ fℎcz

∙
([(

z c
x

)

d
y

]

c
z

)

d
x
⇔ c

∙
([(

fxy c
x

)

gx
y

]

x
z

)

gd
x

⇔ fcggd.

Free Variables

Substitution for a variable in a formula is a bit more involved. This is because of the
influence of any possible quantifiers. For example, take the formula

x = y ∨ x = fy. (2.4)
By Definition 2.2.1, we know that we can substitute constants c for x and d for y in the
terms x, y, and fy. We expect that we should also be able to make this substitution
into the formula resulting in

c = d ∨ c = fd.

However, in the formula
∀x∃y(x = y ∨ x = fy), (2.5)
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the situation is different because of the quantifiers. Consider the corresponding oc-
currences in (2.4) and its quantified (2.5):

∀x∃y(x = y ∨ x = f y)

x = y ∨ x = f y

Even though each occurrence of x and y in (2.4) can receive a substitution, each corre-
sponding occurrence in (2.5) cannot because of the quantifiers.

DEFINITION 2.2.3

Let S be theory symbols. Let t0, t1,… , tn−1 be S-terms, R be an n-ary relation
symbol from S, and p and q be S-formulas. An occurrence of a variable in a
formula is free or not free only according to the following rules:

∙ A variable occurrence in t0 = t1 and Rt0t1 · · · tn−1 is free.
∙ A variable occurrence in ¬p is free if and only if the corresponding occur-
rence in p is free.

∙ A variable occurrence in p ∧ q, p ∨ q, p→ q, and p↔ q is free if and only
if the corresponding occurrence in p or q is free.

∙ Any occurrence of x in ∀xp and ∃xp is not free.
∙ Any occurrence of y ≠ x is free in ∀xp and ∃xp if and only if the corre-
sponding occurrence of y is free in p.

If an occurrence of a variable is not free, it is bound. All free occurrences of
x in p are within the scope of the universal quantifier in ∀xp and the existential
quantifier in ∃xp.

EXAMPLE 2.2.4

Let f be a unary function symbol and R be a 3-ary relation symbol. In the
formula

∀x∃y(x = y ∨ fx = y→ Rxyz),
all occurrences of x and y are bound, but the occurrence of z is free. In the
formula

∃y(x = y ∨ fx = y→ Rxyz),
all occurrences of x and z are free, but the occurrences of y are bound. In

x = y ∨ fx = y→ Rxyz,

all occurrences are free because all occurrences are free in x = y, fx = y, and
Rxyz.

We need to know whether a formula has a free occurrence of a variable, so we make
the next definition.
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DEFINITION 2.2.5

A free variable of the S-formula p is a variable that has a free occurrence in p.

EXAMPLE 2.2.6

Using the f and R from Example 2.2.4, both x and y are free variables of the
formula

Rxyc → ∃x(fy = c),

even though x has both free and bound occurrences.

Formulas

We can now define what it means to make a substitution into a formula.
DEFINITION 2.2.7 [Substitution in Formulas]

Let S be theory symbols from a first-order alphabet A. Let x and y be variable
symbols of A and R be an n-ary relation symbol from S. Suppose that p and q
are S-formulas and t, t0, t1,… , tn−1 are S-terms.

∙ (t0 = t1)
t
x
⇔ t0

t
x
= t1

t
x

∙ (Rt0t1 · · · tn−1)
t
x
⇔ Rt0

t
x
t1
t
x
· · · tn−1

t
x

∙ (¬p) t
x
⇔ ¬

(

p t
x

)

∙ (p ∧ q) t
x
⇔ p t

x
∧ q t

x

∙ (p ∨ q) t
x
⇔ p t

x
∨ q t

x

∙ (p→ q) t
x
⇔ p t

x
→ q t

x

∙ (p↔ q) t
x
⇔ p t

x
↔ q t

x

∙ (∀yp) t
x
⇔

{

∀y
(

p t
x

)

if x ≠ y and y is not a symbol of t
∀yp otherwise

∙ (∃yp) t
x
⇔

{

∃y
(

p t
x

)

if x ≠ y and y is not a symbol of t
∃yp otherwise.

The condition on the term t in the last two parts of Definition 2.2.7 is important.
Consider the RI-formula

p := ∃y(x ⊕ y = ○).
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The usual interpretation of p is that given x, there exists an number y such that x+y = 0.
Let f be a unary function symbol and z be a variable symbol. Since y is not a symbol
of z,

pz
x
⇔ ∃y(z ⊕ y = ○),

which has the same standard interpretation as p. Since y is not a symbol of fz, we can
substitute to find that

p
fz
x

⇔ ∃y(fz ⊕ y = ○).

This is a reasonable substitution because it states that for the number given by fz, there
is a number y that when added to fz gives 0. This is very similar to the standard inter-
pretation of p. Both of these substitutions work because the number of free occurrences
is unchanged by the substitution. However, if we allow the term to include y among its
symbols, the substitution py

x
would yield

∃y(y ⊕ y = ○). (2.6)
The typical interpretation of (2.6) is that there exists a number y such that y + y = 0.
This is a reasonable proposition, but not in the spirit of the original formula p. The
change of interpretation is due to the change in the number of free occurrences. The
formula p has one free occurrence, while (2.6) has none. Therefore, when making a
substitution, the number of free occurrences should not change, and for this reason,

∃y(x ⊕ y = ○)
y
x
⇔ ∃y(x ⊕ y = ○).

EXAMPLE 2.2.8

Let p be the NT formula
∀x0∀x1(x0 = x1 → x0 + x2 = x1 + x2).

Notice that x2 is a free variable of p. However, all occurrences of x0 and x1 arebound. Therefore,
p 0
x0

⇔ ∀x0∀x1(x0 = x1 → x0 + x2 = x1 + x2),

and then letting y be a variable symbol,
(

p 0
x0

)

y
x1

⇔ ∀x0∀x1(x0 = x1 → x0 + x2 = x1 + x2),

and finally,
[(

p 0
x0

)

y
x1

]

1
x2

⇔ ∀x0∀x1(x0 = x1 → x0 + 1 = x1 + 1).

This last formula has no free variables. A standard interpretation of this formula
is
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for every integer x0 and x1, if x0 = x1, then x0 + 1 = x1 + 1.
Furthermore,

p
x1
x2

⇔ [∀x0∀x1(x0 = x1 → x0 + x2 = x1 + x2)]
x1
x2

⇔ ∀x0[∀x1(x0 = x1 → x0 + x2 = x1 + x2)]
x1
x2

⇔ ∀x0∀x1(x0 = x1 → x0 + x2 = x1 + x2).

Let p represent the NT-formula +y2 = 7. Observe that p has y as a free variable. To
emphasize this, instead of writing

p := +y2 = 7,

we often denote the formula by p(y) and write
p(y) := +y2 = 7.

Although x is not a variable in the equation, we can also write
q(x, y) := +y2 = 7.

For example, if we wanted to interpret the formula as an equation with one variable,
we would use p(y). If we wanted to view it as the horizontal line y = 5, we would use
q(x, y).

DEFINITION 2.2.9

Let A be a first-order alphabet with theory symbols S. Let p be an S-formula. If
p has no free variables or the free variables of p are among the distinct variables
x0, x1,… , xn−1 from A, define

p(x0, x1,… , xn−1)⇔ p.

The notation of Definition 2.2.9 can also be used to represent substitutions. Consider
the formula p := x + y = 0. Observe that

(

px
y

)

y
x
⇔ y + y = 0

and
(

p
y
x

) x
y
⇔ x + x = 0.

However, suppose that we want to substitute into p so that the result is y + x = 0. To
accomplish this, we need two new and distinct variable symbols, u and v. Then,
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(

p u
x

) v
y
⇔ u + v = 0, (2.7)

and then,
(

p
y
u

) x
v
⇔ y + x = 0. (2.8)

Therefore,
([

(

p u
x

) v
y

]

y
u

)

x
v
⇔ y + x = 0.

This works because in (2.7), each variable symbol is replaced by a new symbol in such
a way that the resulting formula has the samemeaning as the original. In this way, when
the original variable symbols are brought back in (2.8), all of the substitutions are made
into distinct variables so that there are no conflicts and the switch can be made. This
process can be generalized to any number of variable symbols in any order.

DEFINITION 2.2.10

Let p(x0, x1,… , xn−1) be an S-formula and u0, u1,… , un−1 be distinct variable
symbols not among x0, x1,… , xn−1. Define

p(u0, u1,… , un−1)⇔
(

· · ·
[(

p
u0
x0

)

u1
x1

]

· · ·
)

un−1
xn−1

.

Then, for all S-terms t0, t1,… , tn−1, define

p(t0, t1,… , tn−1)⇔
(

· · ·
[(

p
t0
u0

)

t1
u1

]

· · ·
)

tn−1
un−1

.

This is called a simultaneous substitution and is equivalent to replacing all free
occurrences of x0, x1,… , xn−1 in p with t0, t1,… , tn−1, respectively.

Observe that if p does not have free variables, then p(t0, t1,… , tn−1)⇔ p.
EXAMPLE 2.2.11

To illustrate Definition 2.2.10, let RI′ be the theory symbols of RI combined with
constant symbols 1 and 2. Let p be the RI′-formula

x ⊗ (y ⊕ z) = x ⊗ y ⊕ x ⊗ z.
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Since x, y, and z are free variables, represent p by p(x, y, z, w). Then,

p(1, x, y, 2)⇔
([(

p 1
u1

)

x
u2

]

y
u3

)

2
u4

⇔

([(

[

u1 ⊗ (u2 ⊕ u3) = u1 ⊗ u2 ⊕ u1 ⊗ u3
] 1
u1

)

x
u2

]

y
u3

)

2
w

⇔

([

(

1⊗ (u2 ⊕ u3) = 1⊗ u2 ⊕ 1⊗ u3
) x
u2

]

y
u3

)

2
w

⇔

(

[

1⊗ (x ⊕ u3) = 1⊗ x⊕ 1⊗ u3
] y
u3

)

2
w

⇔ (1⊗ (x ⊕ y) = 1⊗ x⊕ 1⊗ y) 2
w

⇔ 1⊗ (x ⊕ y) = 1⊗ x⊕ 1⊗ y.

EXAMPLE 2.2.12

Let S have constant symbols 5 and 9. Define p(x, y) to be the S-formula
∀x∃z [q(x, y) ∧ r(z)] ∨ ∃y [r(y)→ s(x)] .

The first occurrence of y is free, and since ∀x applies only to variables within the
brackets on the left, the last occurrence of x is also free. Therefore, p(x, y) is the
disjunction of two formulas that we call u(y) and v(x):

u(y)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∀x∃z [q(x, y) ∧ r(z)] ∨

v(x)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∃y [r(y)→ s(x)],

from which we derive
p(9, 5)⇔ u(5) ∨ v(9)⇔ ∀x∃z[q(x, 5) ∧ r(z)] ∨ ∃y[r(y) → s(9)]

As in Example 2.2.11, finding p(9, 5) is equivalent to simply replacing the free
occurrences of x with 9 and the occurrences of y with 5.

EXAMPLE 2.2.13

Consider the NT-formula,
∀x∀y∀z [++xyz = +x+yz] , (2.9)

which is often written as
∀x∀y∀z [(x + y) + z = x + (y + z)] . (2.10)

The formula within the scope of the first quantifier symbol in (2.10) is
p(x) := ∀y∀z [(x + y) + z = x + (y + z)] . (2.11)
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Notice that the occurrences of x are free in (2.11), but the occurrences of y and
z are bound. For example, we can make the substitution

p(2)⇔ ∀y∀z[(2 + y) + z = 2 + (y + z)].

Now, letting
q(x, y) := ∀z[(x + y) + z = x + (y + z)],

we have that p(x)⇔ ∀yq(x, y).We can also define
r(x, y, z) := (x + y) + z = x + (y + z)

so that q(x, y) ⇔ ∀z r(x, y, z). What we have done is to break apart an NT-
formula that contains multiple quantifiers into a sequence of formulas:

∀x

p(x)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∀y∀z [(x + y) + z = x + (y + z)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
r(x, y, z)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
q(x, y)

.

We conclude that (2.10) can be written as
∀x p(x),

∀x∀y q(x, y),

or
∀x∀y∀z r(x, y, z).

Observe that (2.9) has no free variables. It is a type of formula of particular importance
because it represents a proposition. In other words, (2.9) is a propositional form.

DEFINITION 2.2.14

An S-formula with no free variables is called an S-sentence.

Exercises

1. Given a term, make the indicated substitution.
(a)

(

45
x

) 6
y

(b)
[(

xa
y

)

f (x)
x

]

b
x

(c)
[

(x + y)a
x

] g(8)
y

(d)
[(

[

(x + y + z) r
x

] b
y

)

b
z

]

5
x
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2. Given a formula, make the indicated substitution.
(a)

[

(x < 2)
y
x

] 4
x

(b)
(

[

(x < 5→ x + 4 < 9)
y
x

] x
y

)

3
x

(c)
([(

[

(x = 5 ∧ x = y) 5
x

] u
y

)

v
x

]

6
u

)

b
v

(d)
(

[∃x(x − 4 = y) ∨ ∀y(y + z = x + 3)] x
y

)

x
z

3. Identify all free occurrences of x in the given formulas.
(a) x + 4 < 10
(b) ∃x∀y(x + y = 0)
(c) ∀x∀y(x + y = y + x) ∨ ∀z(x + y = z − 3)
(d) ∀x[∀z∀y(x + y = 2 ⋅ z)↔ x + x = 2 ⋅ x]

4. Identify all bound occurrences of x in the given formulas.
(a) (∀x) [p(x)→ (∃y)q(y)]
(b) (∃x)p(x, y)→ (∀y)q(x)
(c) (∃x)(x > 4) ∧ x < 10
(d) [(∀x)(x + 3 = 1) ∧ x = 9] ∨ (∃y)(x < 0)

5. Make the simultaneous substitution p(a) for each of the given formulas.
(a) p(x) := 2x + a = 9
(b) p(x) := ∀x(x + y = y + x)
(c) p(x) := ∃xq(x)→ ∀yr(x, y)
(d) p(x) := x + 4 = 0 ∧ ∃x(y + z = x) ∨ ∃z(x + z = 3)

6. Make the simultaneous substitution q(1, 2, 3) for each of the given formulas.
(a) q(x, y, z) := u + v +w
(b) q(x, y, z) := r(x, y)→ (∀x) [p(x) ∧ (∃y)t(y, z)] .
(c) q(x, y, z) := ∃x(x + y = z) ∧ ∀y(x + y + z) ∨ ∀x∀y(x + y + z)
(d) q(x, y, z) := ∃x[p(x) ∧ ∀y(p(x) ∧ p(y)→ x = y ∨ y = z)]

7. Identify the formula to the right of each quantifiers in the given formulas.
(a) (∀x) [p(x)→ (∃y)q(y)]
(b) (∃x)p(x, y)→ (∀y)q(y)
(c) (∀x)(∃y)(∃z)p(x, y, z) ∧ r(w)
(d) p(x) ∧ (∃x)(∀y)q(x, y) ∨ (∀z)r(z)

8. Which of the following are sentences.
(a) ∀x∀y[q(x) ∨ r(y)]⇒ ∀y[q(a) ∨ r(y)]
(b) q(2) ∧ t(3)⇒ ∃y[q(2) ∧ t(y)]
(c) ∃w[∃x[p(x) ∨ ∃zq(z)↔ ∃y[p(x) ∧ q(y)]→ ∀xr(x)]→ ∀yr(x)]
(d) ∀x∀y(p(x)→ [q(y) ∧ r(z)])→ ∃x¬q(x)
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2.3 SYNTACTICS

Since formulas without free variables are propositional forms, we can write proofs
involving them using the rules from Sections 1.2 through 1.4. However, since the in-
ference rules did not involve quantification, we need new rules to deal with universal
and existential formulas. We need rules covering not only negations but also rules that
enable the removal (instantiation) and adjoining (generalization) of quantifiers. We
add these rules to Definition 1.2.13 to obtain a stronger notion of proof. Furthermore,
since every sentence is a propositional form, every reference to a propositional form in
Definition 1.2.13 can be considered to be a reference to a sentence. This allows us to
write formal proofs using first-order languages.

Quantifier Negation

Consider the proposition
all rectangles are squares.

This sentence is false because there is a rectangle in which one side is twice the length
of the adjacent side, so

not all rectangles are squares.

That is,
some rectangle is not a square

is true. Generalizing, we conclude that
the negation of all P are Q is some P are not Q.

This should be translated as an inference rule for formulas, so we assume
¬∀xp⇒ ∃x¬p. (2.12)

Now consider the proposition
some rectangles are round.

This is false because there are no round rectangles, so
all rectangles are not round

is true. Generalizing, we conclude that
the negation of some P are Q is all P are not Q.

Again, this should be translated as an inference rule for formulas, so we assume
¬∃xp⇒ ∀x¬p. (2.13)
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∀x p ∀x ¬p

∃x p ∃x ¬p

Negations

Figure 2.4 The modern square of opposition.

Furthermore, by DN and (2.13),
∃x¬p⇒ ¬¬∃x¬p⇒ ¬∀x¬¬p⇒ ¬∀xp,

and by DN with (2.12),
∀x¬p⇒ ¬¬∀x¬p⇒ ¬∃x¬¬p⇒ ¬∃xp.

We summarize assumptions (2.12) and (2.13) and the two conclusions in the following
replacement rule.

REPLACEMENT RULES 2.3.1 [Quantifier Negation (QN)]

Let S be theory symbols and p be an S-formula.
∙ ¬∀xp⇔ ∃x¬p

∙ ¬∃xp⇔ ∀x¬p.
QN is illustrated with the modern square of opposition (Figure 2.4). Negations of
quantified formulas are found at opposite corners. A version of the Square is found in
Aristotle’s De Interpretatione, dating around 350 BC (Aristotle 1984).

Whenever we negate formulas of the form ∀xp or ∃xp, to make it easier to read,
the final form should not have a negation immediately to the left of any quantifier, and
using the replacement rules, the negation should be as far into the formula p as possible.
We say that such negations are in positive form.

EXAMPLE 2.3.2

Find the negation of ∀x(p ∧ q) and put the final answer in positive form.
¬∀x(p ∧ q)⇔ ∃x¬(p ∧ q)⇔ ∃x(¬p ∨ ¬q).

The next example will use De Morgan’s law as the last one did. It also needs material
implication and double negation.
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EXAMPLE 2.3.3

Find the negation of ∀x∃y[p(x)→ q(y)] and put it into positive form.
¬∀x∃y[p(x)→ q(y)]⇔ ∃x¬∃y[p(x)→ q(y)]

⇔ ∃x∀y¬[p(x)→ q(y)]
⇔ ∃x∀y¬[¬p(x) ∨ q(y)]
⇔ ∃x∀y[p(x) ∧ ¬q(y)].

Proofs with Universal Formulas

Consider the sentence all multiples of 4 are even. This implies, for instance, that 8,
100, and −16 are even. To generalize this reasoning to formulas means that whenever
we have ∀xp(x), we also have p(a), where a might be either a constant symbol such as
8, 100, and −16 or a randomly chosen constant symbol. This gives the first inference
rule that involves a quantifier. We do not prove it, but take it to be an axiom. Observe
the use of Definition 2.1.6

INFERENCE RULE 2.3.4 [Universal Instantiation (UI)]

If p(x) is an S-formula, then for every constant symbol a from S,
∀xp(x)⇒ p(a),

We make two observations about UI. First, since the resulting formula is to be part
of a proof, the substitution must yield a sentence, so a must be a constant symbol.
Second, we use the notation p(x) to represent the formula instead of p because ∀xp(x)
will be part of a proof, which means, again, that it must be a sentence. Writing p(x)
limits the formula to have only x as a possible free variable, so ∀xp(x) is a sentence.
If the formula p had free variables other than x, then ∀xp would not be a sentence and
not suitable for a proof.

EXAMPLE 2.3.5

Let p, q, and r be S-formulas and a and b be constant symbols from S. The
following are legitimate uses of UI. Notice that each of the inferences results in
an S-formula.

∙ ∀x [p(x)→ q(x)]⇒ p(a)→ q(a)

∙ ∀x [p(x) ∨ ∀yq(y)]⇒ p(a) ∨ ∀yq(y)

∙ ∀x∀y [q(x) ∨ r(y)]⇒ ∀y [q(a) ∨ r(y)]

∙ ∀y [q(a) ∨ r(y)]⇒ q(a) ∧ r(a)

∙ ∀y [q(a) ∨ r(y)]⇒ q(a) ∧ r(b).
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Before we can write formal proofs, we need a rule that will attach a universal quan-
tifier. It will be different from universal instantiation, for it requires a criterion on the
constant.

DEFINITION 2.3.6

Let a be a constant symbol introduced into a formal proof by a substitution. If
the first occurrence of a is in a sentence that follows by UI, then a is arbitrary.
Otherwise, a is particular and can be denoted by â to serve as a reminder that
the symbol is not arbitrary.
The idea behind Definition 2.3.6 is that if a constant symbol a is arbitrary, it repre-

sents a randomly selected object, but if a is particular, then a represents an object with
at least one known property. This property can be identified by a formula p(x) so that
we have p(a).

EXAMPLE 2.3.7

The constant symbol a in the following is not arbitrary because its first occurrence
of a in line 1 is not the result of UI.

1. p(a) Given
2. p(a) ∨ q(a) Add

Therefore, these two lines should be written using â instead of a.
1. p(â) Given
2. p(â) ∨ q(â) Add

However, a in the following is arbitrary because its first occurrence is in line 2,
and line 2 follows from line 1 by UI.

1. ∀xp(x) Given
2. p(a) 1 UI
3. p(a) ∨ q(a) Add

We can now introduce the rule of inference that allows us to attach universal quan-
tifiers to formulas. We state it as an axiom.

INFERENCE RULE 2.3.8 [Universal Generalization (UG)]

If p(x) is an S-formula with no particular constant symbols and a is an arbitrary
constant symbol from S,

p(a)⇒ ∀xp(x).

Consider the following argument:
All squares are rectangles.
All rectangles are quadrilaterals.
Therefore, all squares are quadrilaterals.
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Representing the premises by ∀x[s(x)→ r(x)] and ∀x[r(x)→ q(x)], a formal proof of
this includes UG:

1. ∀x[s(x)→ r(x)] Given
2. ∀x[r(x)→ q(x)] Given
3. s(a)→ r(a) 1 UI
4. r(a)→ q(a) 2 UI
5. s(a)→ q(a) 3, 4 HS
6. ∀x[s(x)→ q(x)] 5 UG

Since a was introduced in line 3 by UI, it is an arbitrary constant symbol. In addition,
s(a) → q(a) contains no particular constant symbols that appeared in the proof by
substitution. Hence, the application of UG in line 6 is legal.

EXAMPLE 2.3.9

These are illegal uses of universal generalization.
∙ Let p(x) be an S-formula with c a constant symbol.

1. p(c) Given
2. ∀xp(x) 1 UG [error]

The constant symbol c in line 1 is particular, even without being written as
ĉ. It was not introduced to the proof by UI. Therefore, universal general-
ization does not apply.

∙ Suppose that a is an arbitrary constant symbol.

1. a + b̂ = 0
2. ∀x(x + b̂ = 0) 1 UG [error]

The restriction against p(x) containing particular symbols prevents the er-
rant conclusion in line 2.

∙ The following is an attempt to prove ∀x∀y(x+ y = 2 ⋅ x) from the formula
∀x(x + x = 2 ⋅ x).

1. ∀x(x + x = 2 ⋅ x) Given
2. a + a = 2 ⋅ a 1 UI
3. ∀y(a + y = 2 ⋅ a) 2 UG [error]
4. ∀x∀y(x + y = 2 ⋅ x) 3 UG

Although the constant symbol a in line 2 is arbitrary, the proof is not valid.
The reason is that an illegal substitution was made in line 3. To see this, let

p(x) := x + x = 2 ⋅ x.
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Applying universal generalization gives
∀y(y + y = 2 ⋅ y)

because p(y)⇔ y + y = 2 ⋅ y, but this is not what was written in line 3.

Now for some formal proofs.
EXAMPLE 2.3.10

Prove: ∀x∀yp(x, y) ⊢ ∀y∀xp(x, y)
1. ∀x∀yp(x, y) Given
2. ∀yp(a, y) 1 UI
3. p(a, b) 2 UI
4. ∀xp(x, b) 3 UG
5. ∀y∀xp(x, y) 4 UG

Since both a and b first appear because of UI, they are arbitrary and universal
generalization can be applied to both constant symbols.

EXAMPLE 2.3.11

Prove: ∀x [p(x)→ q(x)] ,∀x¬ [q(x) ∨ r(x)] ⊢ ∀x¬p(x)

1. ∀x [p(x)→ q(x)] Given
2. ∀x¬ [q(x) ∨ r(x)] Given
3. p(a)→ q(a) 1 UI
4. ¬ [q(a) ∨ r(a)] 2 UI
5. ¬q(a) ∧ ¬r(a) 4 DeM
6. ¬q(a) 5 Simp
7. ¬p(a) 3, 6 MT
8. ∀x¬p(x) 7 UG

Notice that the a in line 3 was introduced because of UI. Hence, a is arbitrary
throughout the proof.

Proofs with Existential Formulas

Since 4 + 5 = 9, we conclude that there exists x such that x + 5 = 9. Since we
can construct an isosceles triangle, we conclude that isosceles triangles exist. This
motivates the next inference rule.
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THEOREM 2.3.12 [Existential Generalization (EG)]

If p(x) is an S-formula and a is a constant symbol from S,
p(a)⇒ ∃xp(x).

PROOF
Assume p(a). Suppose that ∀x¬p(x). By UI we have that ¬p(a). Therefore,
¬∀x¬p(x) by IP, from which ∃xp(x) follows by QN.
EXAMPLE 2.3.13

Each of the following is a valid use of existential generalization.
∙ p(a) ∧ ¬r(a) ⇒ ∃x [p(x) ∧ ¬r(x)]

∙ q(a) ∧ t(b)⇒ ∃y [q(a) ∧ t(y)].

Before we write some proofs, here is the inference rule that allows us to detach
existential quantifiers.

THEOREM 2.3.14 [Existential Instantiation (EI)]

If p(x) is an S-formula,
∃xp(x)⇒ p(â),

where a is a constant symbol from S that has no occurrence in the formal proof
prior to p(â).

PROOF
Assume that ∃xp(x) does not infer p(b) for any constant symbol b. Suppose
∃xp(x). Combinedwith the assumption, this implies that¬p(b) for every constant
symbol b by the law of the excluded middle (page 37) and DS. That is, ¬p(a) for
an arbitrary constant symbol a. Therefore, ∀x¬p(x) by UG, so ¬∃xp(x) by QN,
which is a contradiction. Therefore, ∃xp(x)⇒ p(a) for some constant symbol a,
and a is particular by Definition 2.3.6.

The constant symbol â obtained by EI is called a witness of ∃xp(x).
The reason that the constant symbol a must have no prior occurrence in a proof

when applying EI is because a used symbol already represents some object, so if a had
appeared in an earlier line, we would have no reason to assume that we could write p(a)
from ∃xp(x). For example, given

∃x(x + 4 = 5) (2.14)
and

∃x(x + 2 = 13), (2.15)
we write a + 4 = 5 for some constant symbol a by EI and (2.14). By EI and (2.15),
we conclude that b + 2 = 13 for some constant symbol b, but inferring a + 2 = 13 is
invalid because a ≠ b.
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EXAMPLE 2.3.15

The following are legal uses of existential instantiation assuming that a and b
have no prior occurrences.

∙ ∃x [p(x) ∧ q(x)]⇒ p(â) ∧ q(â)

∙ ∃y [r(a, y, c)→ r(a, y, c)]⇒ r(a, b̂, c)→ r(a, b̂, c)

∙ ∃x∀y∃zq(x, y, z) ⇒ ∀y∃zq(â, y, z).
EXAMPLE 2.3.16

Existential Instantiation cannot be used to justify either of the following.
∙ ∃z [p(z) ∨ q(z)] does not imply p(b̂) ∨ q(z) by EI because the substitution
was not made correctly. The result should have been p(b̂) ∨ q(b̂).

∙ ∃x∃yp(a, x, y) does not imply ∃yp(a, a, y) by EI because a has a prior oc-
currence. Also, notice that the hat notation was not used.

EXAMPLE 2.3.17

Assume that x is a real number and consider the following.
1. ∀x∃y(x + y = 0) Given
2. ∃y(a + y = 0) 1 UI
3. a + b̂ = 0 2 EG
4. ∀x(x + b̂ = 0) 3 UG [error]
5. ∃y∀x(x + y = 0) 4 EG

The conclusion in line 5 is incorrect. The problem lies in line 4 where UG was
applied despite the particular constant symbol in line 3 (compare Example 2.3.9).
This example makes clear why there is a restriction on particular elements in UG
(Inference Rule 2.3.8). Since b represents a particular real number, line 3 cannot
be used to conclude that all real numbers plus that particular b equals 0. We
know that b is the witness to line 2, but that is all we know about it. To correct
the argument, we can essentially reverse the steps to arrive back at the premise.

1. ∀x∃y(x + y = 0) Given
2. ∃y(a + y = 0) 1 UI
3. a + b̂ = 0 2 EG
4. ∃y(x + y = 0) 3 EG
5. ∀x∃y(x + y = 0) 4 UG

Notice that there is no particular constant symbol in line 4, so line 5 does legally
follow by UG.

Here are some formal proofs that use existential instantiation and generalization.
EXAMPLE 2.3.18

Prove: ∃x [p(x) ∧ q(x)] ,∀x [p(x)→ r(x)] ⊢ ∃xr(x)
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1. ∃x [p(x) ∧ q(x)] Given
2. ∀x [p(x)→ r(x)] Given
3. p(ĉ) ∧ q(ĉ) 1 EI
4. p(ĉ)→ r(ĉ) 2 UI
5. p(ĉ) 3 Simp
6. r(ĉ) 4, 5 MP
7. ∃xr(x) 6 EG

EXAMPLE 2.3.19

Prove: ∀x∃y [q(x) ∧ t(y)] ⊢ ∀x [q(x) ∧ (∃y)t(y)]
1. ∀x∃y [q(x) ∧ t(y)] Given
2. ∃y [q(a) ∧ t(y)] 1 UI
3. q(a) ∧ t(ĉ) 2 EI
4. t(ĉ) ∧ q(a) 3 Com
5. t(ĉ) 4 Simp
6. ∃yt(y) 5 EG
7. q(a) 3 Simp
8. q(a) ∧ (∃y)t(y) 6, 7 Conj
9. ∀x [q(x) ∧ (∃y)t(y)] 8 UG

EXAMPLE 2.3.20

Prove : p(a)→ ∃x [q(x) ∧ r(x)] , p(a) ⊢ ∃xr(x)

1. p(â) → ∃x [q(x) ∧ r(x)] Given
2. p(â) Given
3. ∃x [q(x) ∧ r(x)] 1, 2 MP
4. q(b̂) ∧ r(b̂) 3 EI
5. r(b̂) ∧ q(b̂) 4 Com
6. r(b̂) 5 Simp
7. ∃xr(x) 6 EG

Exercises

1. Use QN and other replacement rules to determine whether the following are legal
replacements.

(a) ¬∀xp(x)⇔ ∀x¬p(x)
(b) ¬∃xp(x)⇔ ¬∀xp(x)
(c) ∀x¬p(x)⇔ ∃xp(x)
(d) ∃x [p(x)→ q(x)]⇔ ¬∀x [¬p(x)→ ¬q(x)]
(e) ¬∀x∃yp(x, y)⇔ ∃x∀y¬p(x, y)
(f) ¬∀x∃yp(x, y)⇔ ∃y∀xp(x, y)
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2. Negate and put into positive form.
(a) ∃x [q(x)→ r(x)]
(b) ∀x∃y [p(x) ∧ q(y)]
(c) ∃x∃y [p(x) ∨ q(x, y)]
(d) ∀x∀y [p(x) ∨ (∃z)q(y, z)]
(e) ∃x¬r(x) ∨ ∀x [q(x)↔ ¬p(x)]
(f) ∀x∀y∃z(p(x)→ [q(y) ∧ r(z)])→ ∃x¬q(x)

3. Determine whether each pair of propositions are negations. If they are not, write
the negation of both.

(a) Every real number has a square root.
Every real number does not have a square root.

(b) Every multiple of four is a multiple of two.
Some multiples of two are multiples of four.

(c) For all x, if x is odd, then x2 is odd.
There exists x such that if x is odd, then x2 is even.

(d) There exists an integer x such that x + 1 = 10.
For all integers x, x + 1 ≠ 10.

4. Write the negation of the following propositions in positive form and in English.
(a) For all x, there exists y such that y∕x = 9.
(b) There exists x so that xy = 1 for all real numbers y.
(c) Every multiple of ten is a multiple of five.
(d) No interval contains a rational number.
(e) There is an interval that contains a rational number.

5. Let f be a function and c be a real number in the open interval I . Then, f is
continuous at c if for every � > 0, there exists � > 0 such that for all x in I , if
0 < |x − c| < �, then |f (x) − f (c)| < �.

(a) Write what it means for f to be not continuous at c.
(b) The function f is continuous on an open interval if it is continuous at every

point of the interval. Write what it means for f to be not continuous on an
open interval.

6. Let f be a function and c a real number in the open interval I . Then, f is uniformly
continuous on I means that for every � > 0, there exists � > 0 such that for all c and
x in I , if 0 < |x − c| < �, then |f (x) − f (c)| < �.

(a) Write what it means for f to be not uniformly continuous on I .
(b) How does f being continuous on I differ from f being uniformly continuous

on I?
7. Prove using QN.

(a) ∃xp(x) ⊢ ∀x¬p(x)→ ∀xq(x)
(b) ∀x[p(x)→ q(x)],∀x[q(x)→ r(x)],¬∀xr(x) ⊢ ∃x¬p(x)
(c) ∀xp(x)→ ∀y[q(y)→ r(y)],∃x[q(x) ∧ ¬r(x)] ⊢ ∃x¬p(x)
(d) ∃xp(x)→ ∃yq(y),∀x¬q(x) ⊢ ∀x¬p(x)
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8. Find all errors in the given proofs.
(a) “∃x [p(x) ∨ q(x)] ,∃x¬q(x) ⊢ ∃xp(x)”

Attempted Proof
1. ∃x [p(x) ∨ q(x)] Given
2. ∃x¬q(x) Given
3. p(c) ∨ q(c) 1 EI
4. ¬q(c) 2 EI
5. ¬p(c) 3, 4 DS
6. ∃x¬p(x) 5 EG

(b) “∀xp(x) ⊢ ∃x∀y [p(x) ∨ q(y)]”
Attempted Proof
1. ∀xp(x) Given
2. p(ĉ) 1 UI
3. p(ĉ) ∨ q(a) 2 Add
4. ∀y [p(ĉ) ∨ q(y)] 3 UG
5. ∃y∀x [p(x) ∨ q(y)] 4 EG

(c) “∃xp(x),∃xq(x) ⊢ ∀x [p(x) ∧ q(x)]”
Attempted Proof
1. ∃xp(x) Given
2. ∃xq(x) Given
3. p(ĉ) 1 EI
4. q(ĉ) 2 EI
5. p(ĉ) ∧ q(c) 3, 4 Conj
6. ∀x [p(x) ∧ q(x)] 5 UG

9. Prove.
(a) ∀xp(x) ⊢ ∀x [p(x) ∨ q(x)]
(b) ∀xp(x),∀x [q(x)→ ¬p(x)] ⊢ ∀x¬q(x)
(c) ∀x [p(x)→ q(x)] ,∀xp(x) ⊢ ∀xq(x)
(d) ∀x [p(x) ∨ q(x)] ,∀x¬q(x) ⊢ ∀xp(x)
(e) ∃xp(x) ⊢ ∃x [p(x) ∨ q(x)]
(f) ∃x∃yp(x, y) ⊢ ∃y∃xp(x, y)
(g) ∀x∀yp(x, y) ⊢ ∀y∀xp(x, y)
(h) ∀x¬p(x),∃x [q(x)→ p(x)] ⊢ ∃x¬q(x)
(i) ∃xp(x),∀x [p(x)→ q(x)] ⊢ ∃xq(x)
(j) ∀x [p(x)→ q(x)] ,∀x [r(x)→ s(x)] ,∃x [p(x) ∨ r(x)] ⊢ ∃x [q(x) ∨ s(x)]
(k) ∃x [p(x) ∧ ¬r(x)] ,∀x [q(x)→ r(x)] ⊢ ∃x¬q(x)
(l) ∀xp(x),∀x([p(x) ∨ q(x)]→ [r(x) ∧ s(x)]) ⊢ ∃xs(x)
(m) ∃xp(x),∃xp(x)→ ∀x∃y [p(x)→ q(y)] ⊢ ∀xq(x) ∨ ∃xr(x)
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(n) ∃xp(x),∃xq(x),∃x∃y [p(x) ∧ q(y)]→ ∀xr(x) ⊢ ∀xr(x)

10. Prove the following:
(a) p(x) ∧ ∃yq(y)⇔ ∃y[p(x) ∧ q(y)]
(b) p(x) ∨ ∃yq(y)⇔ ∃y[p(x) ∨ q(y)]
(c) p(x) ∧ ∀yq(y)⇔ ∀y[p(x) ∧ q(y)]
(d) p(x) ∨ ∀yq(y)⇔ ∀y[p(x) ∨ q(y)]
(e) ∃xp(x)→ q(y)⇔ ∀x[p(x)→ p(y)]
(f) ∀xp(x)→ q(y)⇔ ∃x[p(x)→ p(y)]
(g) p(x)→ ∃yq(q)⇔ ∃y[p(x)→ p(y)]
(h) p(x)→ ∀yq(q)⇔ ∀y[p(x)→ p(y)]

11. An S-formula is in prenex normal form if it is of the form
Q0x0Q1x1…Qn−1xn−1q,

where Q0, Q1,… , Qn−1 are quantifier symbols and q is a S-formula. Every S-formula
can be replaced with an S-formula in prenex normal form, although variables might
need to be renamed. Use Exercise 10 and QN to put the given formulas in prenex
normal form.

(a) [p(x) ∨ q(x)]→ ∃y[q(y)→ r(y)]
(b) ¬∀x[p(x)→ ¬∃yq(y)]
(c) ∃xp(x)→ ∀x∃y [p(x)→ q(y)]
(d) ∀x[p(x)→ q(y)] ∧ ¬∃y∀z[r(y) → s(z)]

2.4 PROOF METHODS

The purpose of the propositional logic of Chapter 1 is to model the basic reasoning that
one does in mathematics. Rules that determine truth (semantics) and establish valid
forms of proof (syntactics) were developed. The logic developed in this chapter is an
extension of propositional logic. It is called first-order logic. As with propositional
logic, first-order logic provides a working model of a type of deductive reasoning that
happens when studying mathematics, but with a greater emphasis on what a particular
proposition is communicating about its subject. Geometry can serve as an example.
To solve geometric problems and prove geometric propositions means to work with the
axioms and theorems of geometry. What steps are legal when doing this are dictated by
the choice of the logic. Because the subjects of geometric propositions are mathemati-
cal objects, such as points, lines, and planes, first-order logic is a good choice. However,
sometimes other logical systems are used. An example of such an alternative is second-
order logic, which allows quantification over function and relation symbols (page 73)
in addition to quantification over variable symbols. Whichever logic is chosen, that
logic provides the general rules of reasoning for the mathematical theory. Since it has
its own axioms and theorems, a logic itself is a theory, but because it is intended to
provide rules for other theories, it is sometimes called ametatheory (Figure 2.5).

Although all mathematicians use logic, they usually do not use symbolic logic. In-
stead, their proofs are written using sentences in English or some other human language
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First-order logic (metatheory)

Mathematics

Geometry
(theory)

Calculus
(theory)

Figure 2.5 First-order logic is a metatheory of mathematical theories.

and usually do not provide all of the details. Call these paragraph proofs. Their in-
tention is to lead the reader from the premises to the conclusion, making the result
convincing. In many instances, a proof could be translated into the first-order logic,
but this is not needed to meet the need of the mathematician. However, that it could
be translated means that we can use first-order logic to help us write paragraph proofs,
and in this section, we make that connection.

Universal Proofs

Our first paragraph proofs will be for propositions with universal quantifiers. To prove
∀xp(x) from a given set of premises, we show that every object satisfies p(x) assuming
those premises. Since the proofs are mathematical, we can restrict the objects to a
particular universe. A proposition of the form ∀xp(x) is then interpreted to mean that
p(x) holds for all x from a given universe. This restriction is reasonable because we are
studying mathematical things, not airplanes or puppies. To indicate that we have made
a restriction to a universe, we randomly select an object of the universe by writing an
introduction. This is a proposition that declares the type of object represented by the
variable. The following are examples of introductions:

Let a be a real number.
Take a to be an integer.

Suppose a is a positive integer.

From here we show that p(a) is true. This process is exemplified by the next diagram:
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∀x p(x)

Let a be an object in the universe.

Prove p(a).

These types of proofs are called universal proofs.
EXAMPLE 2.4.1

To prove that for all real numbers x,
(x − 1)3 = x3 − 3x2 + 3x − 1,

we introduce a real number and then check the equation.
PROOF
Let a be a real number. Then,

(a − 1)3 = (a − 1)(a − 1)2

= (a − 1)(a2 − 2a + 1)

= a3 − 3a2 + 3a − 1.

For our next example, we need some terminology.
DEFINITION 2.4.2

For all integers a and b, a divides b (written as a ∣ b) if a ≠ 0 and there exists an
integer k such that b = ak.

Therefore, 6 divides 18, but 8 does not divide 18. In this case, write 6 ∣ 18 and 8 - 18.
If a ∣ b, we can also write that b is divisible by a, a is a divisor or a factor of b, or b is
a multiple of a. For this reason, to translate a predicate like 4 divides a, write

a = 4k for some integer k.

A common usage of divisibility is to check whether an integer is divisible by 2 or not.
DEFINITION 2.4.3

An integer n is even if 2 ∣ n, and n is odd if 2 ∣ (n − 1).
We are now ready for the example.

EXAMPLE 2.4.4

Let us prove the proposition
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the square of every even integer is even.

This can be rewritten using a variable:
for all even integers n, n2 is even.

The proof goes like this.
PROOF
Let n be an even integer. This means that there exists an integer k such
that n = 2k, so we can calculate:

n2 = (2k)2 = 4k2 = 2(2k2).

Since 2k2 is an integer, n2 is even.
Notice how the definition was used in the proof. After the even number was
introduced, a proposition that translated the introduction into a form that was
easier to use was written. This was done using Definitions 2.4.2 and 2.4.3.

Existential Proofs

Suppose that we want to write a paragraph proof for ∃xp(x). This means that we must
show that there exists at least one object of the universe that satisfies the formula p(x).
It will be our job to find that object. To do this directly, we pick an object that we
think will satisfy p(x). This object is called a candidate. We then check that it does
satisfy p(x). This type of a proof is called a direct existential proof, and its structure
is illustrated as follows:

∃x p(x)

Choose a candidate from the universe.

Check that the candidate satisfies p(x).

EXAMPLE 2.4.5

To prove that there exists an integer x such that x2 + 2x − 3 = 0, we find an
integer that satisfies the equation. A basic factorization yields

(x + 3)(x − 1) = 0.

Since x = −3 or x = 1 will work, we choose (arbitrarily) x = 1. Therefore,
(1)2 + 2(1) − 3 = 0,

proving the existence of the desired integer.
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Suppose that we want to prove that there is a function f such that the derivative of f
is 2x. After a quick mental calculation, we choose f (x) = x2 as a candidate and check
to find that

d
dx
x2 = 2x. (2.16)

Notice that d∕dx is a function that has functions as its inputs and outputs. Let d rep-
resent this function. That is, d is a function symbol such that

d(f )(x) = d
dx
f (x).

A formula that represents the proposition that was just proved is

∃f (d(f )(x) = 2x). (2.17)

This is a second-order formula (page 73) because the variable symbol x represents a
real number (an object of the universe) and f is a function symbol taking real numbers
as arguments. Although this kind of reasoning is common to mathematics, it cannot
be written as a first-order formula. This shows that there is a purpose to second-order
logic. It is not a novelty.

EXAMPLE 2.4.6

To represent (2.16) as a first-order formula, let d be a unary function symbol
representing the derivative and write

∀x[d(x2) = 2x].

Notice, however, that this formula does not convey the same meaning as (2.17).

Multiple Quantifiers

Let us take what we have learned concerning the universal and existential quantifiers
and write paragraph proofs involving both. The first example is a simple one from
algebra but will nicely illustrate our method.

EXAMPLE 2.4.7

Prove that for every real number x, there exists a real number y so that x+y = 2.
This translates to

∀x∃y(x + y = 2)

with the universe equal to the real numbers. Remembering that a universal quan-
tifier must apply to all objects of the universe and an existential quantifier means
that we must find the desired object, we have the following:
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∀x ∃y (x + y = 2)

Let x be a real number. Find a real number y.

Check that x + y = 2.

After taking an arbitrary x, our candidate will be y = 2 − x.
PROOF
Let x be a real number. Choose y = 2 − x and calculate:

x + y = x + (2 − x) = 2.

Now let us switch the order of the quantifiers.
EXAMPLE 2.4.8

To see that there exists an integer x such that for all integers y, x+ y = y, we use
the following:

∃x ∀y (x + y = y)

Let y be an integer.Find an integer x.

 Show x + y = y.

In the proof, the first goal is to identify a candidate. Then, we must show that it
works with every real number.

PROOF
We claim that 0 is the sought after object. To see this, let y be an integer.
Then 0 + y = y.

The next example will involve two existential quantifiers. Therefore, we have to find
two candidates.

EXAMPLE 2.4.9

We prove that there exist real numbers a and b so that for every real number x,
(a + 2b)x + (2a − b) = 2x − 6.

Translating we arrive at
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∃a ∃b ∀x[(a + 2b)x + (2a − b) = 2x − 6]

Find a real number b.Find a real number a.

 Show (a + 2b)x + (2a − b) = 2x − 6.Let x be a real number.

We have to choose two candidates, one for a and one for b, and then check by
taking an arbitrary x.

PROOF
Solving the system,

a + 2b = 2,
2a − b = −6,

we choose a = −2 and b = 2. Let x be a real number. Then,
(a + 2b)x + (2a − b) = (−2 + 2 ⋅ 2)x + (2 ⋅ (−2) − 2) = 2x − 6.

Counterexamples

There are many times in mathematics when we must show that a proposition of the
form ∀xp(x) is false. This can be accomplished by proving ∃x¬p(x) is true, and this
is done by showing that an object a exists in the universe such that p(a) is false. This
object is called a counterexample to ∀xp(x).

EXAMPLE 2.4.10

Show false:
x + 2 = 7 for all real numbers x.

To do this, we show that ∃x(x + 2 ≠ 7) is true by noting that the real number 0
satisfies x + 2 ≠ 7. Hence, 0 is a counterexample to ∀x(x + 2 = 7).

The idea of a counterexample can be generalized to cases with multiple universal quan-
tifiers.

EXAMPLE 2.4.11

We know from algebra that every quadratic polynomial with real coefficients has
a real zero is false. This can be symbolized as

∀a∀b∀c∃x(ax2 + bx + c = 0),

where the universe is the collection of real numbers. The counterexample is found
by demonstrating

∃a∃b∃c∀x(ax2 + bx + c ≠ 0).
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Many polynomials could be chosen, but we select x2 +1. Its only zeros are i and
−i. This means that a = 1, b = 0, and c = 1 is our counterexample.

Direct Proof

Direct Proof is the preferred method for proving implications. To use Direct Proof to
write a paragraph proof identify the antecedent and consequent of the implication and
then follow these steps:

∙ assume the antecedent,
∙ translate the antecedent,
∙ translate the consequent so that the goal of the proof is known,
∙ deduce the consequent.

Our first example will use Definitions 2.4.2 and 2.4.3. Notice the introductions in the
proof.

EXAMPLE 2.4.12

We use Direct Proof to write a paragraph proof of the proposition
for all integers x, if 4 divides x, then x is even.

First, randomly choose an integer a and then identify the antecedent and conse-
quent:

if 4 divides x , then x is even .

Use these to identify the structure of the proof:

4 divides a.
This means a = 4k.

2 divides a.

Show a = 2l.

Assume the antecedent.

Translate the antecedent.

Translate the consequent.

Deduce the consequent.

…

Now write the final version from this structure.
PROOF
Assume that 4 divides the integer a. This means a = 4k for some integer
k. We must show that a = 2l for some integer l, but we know that a =
4k = 2(2k). Hence, let l = 2k.

Sometimes it is difficult to prove a conditional directly. An alternative is to prove
the contrapositive. This is sometimes easier or simply requires fewer lines. The next
example shows this method in a paragraph proof.
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EXAMPLE 2.4.13

Let us show that
for all integers n, if n2 is odd, then n is odd.

A direct proof of this is a problem. Instead, we prove its contrapositive,
if n is not odd, then n2 is not odd.

In other words, we prove that
if n is even, then n2 is even.

This will be done using Direct Proof:

Let n be even.
This means n = 2k.

2 divides n  .

Show n   = 2l.

…

Assume the antecedent.

Translate the antecedent.

Translate the consequent.

Deduce the consequent.

2

2

This leads to the final proof.
PROOF
Let n be an even integer. This means that n = 2k for some integer k. To
see that n2 is even, calculate to find

n2 = (2k)2 = 4k2 = 2(2k2).

Notice that this proof is basically the same as the proof for the square of every
even integer is even on page 99. This illustrates that there is a connection between
universal proofs and direct proofs (Exercise 4).

Existence and Uniqueness

There will be times when we want to show that there exists exactly one object that
satisfies a given predicate p(x). In other words, there exists a unique object that satisfies
p(x). This is a two-step process.

∙ Existence: Show that there is at least one object that satisfies p(x).
∙ Uniqueness: Show that there is at most one object that satisfies p(x). This is
usually done by assuming both a and b satisfy p(x) and then proving a = b.

This means to prove that there exists a unique x such that p(x), we prove
∃xp(x) ∧ ∀x∀y(p(x) ∧ p(y)→ x = y).

Use direct or indirect existential proof to demonstrate that an object exists. The next
example illustrates proving uniqueness.
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EXAMPLE 2.4.14

Let m and n be nonnegative integers with m ≠ 0. To show that there is at most
one pair of nonnegative integers r and q such that

r < m and n = mq + r,
suppose in addition to r and q that there exists nonnegative integers r′ and q′ such
that

r′ < m and n = mq′ + r′.
Assume that r′ > r. By Exercise 13, q > q′, so there exists u, v > 0 such that

r′ = r + u and q = q′ + v.
Therefore,

m(q′ + v) + r = mq′ + r + u,
mq′ + mv + r = mq′ + r + u,

mv = u.

Since v > 0, there exists w such that v = w + 1. Hence,
mw + m = m(w + 1) = mv = u,

so m ≤ u. However, since r < m and r′ < m, we have that u < m (Exercise 13),
which is impossible. Lastly, the assumption r > r′ leads to a similar contradic-
tion. Therefore, r = r′, which implies that q = q′.

EXAMPLE 2.4.15

To prove 2x + 1 = 5 has a unique real solution, we show
∃x(2x + 1 = 5)

and
∀x∀y(2x + 1 = 5 ∧ 2y + 1 = 5→ x = y).

∙ We know that x = 2 is a solution since 2(2) + 1 = 5.
∙ Suppose that a and b are solutions. We know that both 2a + 1 = 5 and
2b + 1 = 5, so we calculate:

2a + 1 = 2b + 1,
2a = 2b,
a = b.

Indirect Proof

To use indirect proof, assume each premise and then assume the negation of the con-
clusion. Then proceed with the proof until a contradiction is reached. At this point,
deduce the original conclusion.
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EXAMPLE 2.4.16

Earlier we proved
for all integers n, if n2 is odd, then n is odd

by showing its contrapositive. Here we nest an Indirect Proof within a Direct
Proof:

Assume n   is odd.
Suppose n is even.

Contradiction
n is odd.

Assume the antecedent.

Assume the negation.

Deduce a contradiction.

Conclude the consequent.

2

…

We use this structure to write the paragraph proof.
PROOF
Take an integer n and let n2 be odd. In order to obtain a contradiction,
assume that n is even. So, n = 2k for some integer k. Substituting, we
have

n2 = (2k)2 = 2(2k2),

showing that n2 is even. This is a contradiction. Therefore, n is an odd
integer.

Indirect proof has been used to prove many famous mathematical results including the
next example.

EXAMPLE 2.4.17

We show that√2 is an irrational number. Suppose instead that
√

2 = a
b
,

where a and b are integers, b ≠ 0, and the fraction a∕b has been reduced. Then,

2 = a2

b2
,

so a2 = 2b2. Therefore, a = 2k for some integer k [Exercise 11(c)]. We conclude
that b2 = 2k2, which implies that b is also even. However, this is impossible
because the fraction was reduced.

There are times when it is difficult or impossible to find a candidate for an existential
proof. When this happens, an indirect existential proof can sometimes help.
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EXAMPLE 2.4.18

If n is an integer such that n > 1, then n is prime means that the only positive
divisors of n are 1 and n; else n is composite. From the definition, if n is com-
posite, there exist a and b such that n = ab and 1 < a ≤ b < n. For example, 2,
11, and 97 are prime, and 4 and 87 are composite. Euclid proved that there are
infinitely many prime numbers (Elements IX.20). Since it is impossible to find
all of these numbers, we prove this theorem indirectly. Suppose that there are
finitely many prime numbers and list them as

p0, p1,… , pn−1.

Consider
q = p0p1 · · · pn−1 + 1.

If q is prime, q = pi for some i = 0, 1,… , n − 1, which would imply that pidivides 1. Therefore, q is composite, but this is also impossible because q must
have a prime factor, which again means that 1 would be divisible by a prime.

Biconditional Proof

The last three types of proofs that we will examine rely on direct proof. The first of
these takes three forms, and they provide the usual method of proving biconditionals.
The first form follows because p → q and q → p imply (p → q) ∧ (q → p) by Conj,
which implies p↔ q by Equiv.

INFERENCE RULE 2.4.19 [Biconditional Proof (BP)]

p→ q, q → p⇒ p↔ q.

The rule states that a biconditional can be proved by showing both implications. Each is
usually proved with direct proof. As is seen in the next example, the p→ q subproof is
introduced by (→) and its converse with (←). The conclusions of the two applications
of direct proof are combined in line 7.

EXAMPLE 2.4.20

Prove: p→ q ⊢ p ∧ q ↔ p

1. p→ q Given
(→) 2. →p ∧ q Assumption

3. p 2 Simp
(←) 4. →p Assumption

5. q 1, 4 MP
6. p ∧ q 4, 5 Conj
7. p ∧ q ↔ p 2–6 BP
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Sometimes the steps for one part are simply the steps for the other in reverse. When
this happens, our work is cut in half, and we can use the short rule of biconditional
proof. These proofs are simply a sequence of replacements with or without the reasons.
This is a good method when only rules of replacement are used as in the next example.
(Notice that there are no hypotheses to assume.)

EXAMPLE 2.4.21

Prove: ⊢ p→ q ↔ p ∧ ¬q → ¬p

p→ q ⇔ ¬p ∨ q Impl
⇔ ¬p ∨ ¬p ∨ q Idem
⇔ ¬p ∨ (¬p ∨ q) Assoc
⇔ ¬p ∨ q ∨ ¬p Com
⇔ ¬p ∨ ¬¬q ∨ ¬p DN
⇔ ¬(p ∧ ¬q) ∨ ¬p DM
⇔ p ∧ ¬q → ¬p Impl

EXAMPLE 2.4.22

Let us use biconditional proof to show that
for all integers n, n is even if and only if n3 is even.

Since this is a biconditional, we must show both implications:
if n is even , then n3 is even ,

and
if n3 is even , then n is even .

To prove the second conditional, we prove its contrapositive. Therefore, using
the pattern of the previous example, the structure is

(→) →Assume n is even
Then, n = 2k for some integer k

⋮
n3 = 2l, with l being an integer
n3 is even

(←) →Assume n is odd
Then, n = 2k + 1 for some integer k

⋮
n3 = 2l + 1, with l being an integer
n3 is odd
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PROOF
Let n be an integer.
∙ Assume n is even. Then, n = 2k for some integer k. We show that
n3 is even. To do this, we calculate:

n3 = (2k)3 = 2(4k3),

which means that n3 is even.
∙ Now suppose that n is odd. This means that n = 2k + 1 for some
integer k. To show that n3 is odd, we again calculate:

n3 = (2k + 1)3 = 8k3 + 12k2 + 6k + 1 = 2(4k3 + 6k2 + 3k) + 1.

Hence, n3 is odd.

Notice that the words were chosen carefully to make the proof more readable. Fur-
thermore, the example could have been written with the words necessary and sufficient
introducing the two subproofs. The (→) step could have been introduced with a phrase
like

to show sufficiency,

and the (←) could have opened with
as for necessity.

There will be times when we need to prove a sequence of biconditionals. The propo-
sitional forms p0, p1,… , pn−1 are pairwise equivalent if for all i, j,

pi ↔ pj .
In other words,

p0 ↔ p1, p0 ↔ p2,… , p1 ↔ p2, p1 ↔ p3,… , pn−2 ↔ pn−1.

To prove all of these, we make use of the Hypothetical Syllogism. For example, if we
know that p0 → p1, p1 → p2, and p2 → p0, then

p0 → p2 (because p0 → p1 ∧ p1 → p2),
p1 → p0 (because p1 → p2 ∧ p2 → p0),
p2 → p1 (because p2 → p0 ∧ p0 → p1).

The result is the equivalence rule.
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INFERENCE RULE 2.4.23 [Equivalence Rule]

To prove that the propositional forms p0, p1,… , pn−1 are pairwise equivalent,
prove:

p0 → p1, p1 → p2,… , pn−2 → pn−1, pn−1 → p0.

In practice, the equivalence rule will typically be used to prove propositions that
include the phrase

the following are equivalent.

EXAMPLE 2.4.24

Let
f (x) = anxn + an−1xn−1 + · · · + a1x + a0

be a polynomial with real coefficients. That is, each ai is a real number and n is
a nonnegative integer. An integer r is a zero of f (x) if

anr
n + an−1rn−1 + · · · + a1r + a0 = 0,

written as f (r) = 0, and a polynomial g(x) is a factor of f (x) if there is a poly-
nomial ℎ(x) such that f (x) = g(x)ℎ(x). Whether g(x) is a factor of f (x) or not,
there exist unique polynomials q(x) and r(x) such that

f (x) = g(x)q(x) + r(x) (2.18)
and

the degree of r(x) is less than the degree of g(x). (2.19)
This result is called the polynomial division algorithm, The polynomial q(x) is
the quotient and r(x) is the remainder. We prove that the following are equiv-
alent:

∙ r is a zero of f (x).
∙ r is a solution to f (x) = 0.
∙ x − r is a factor of f (x).

To do this, we prove three conditionals:
if r is a zero of f (x) , then r is a solution to f (x) = 0 ,

if r is a solution to f (x) = 0 , then x − r is a factor of f (x) ,

and
if x − r is a factor of f (x) , then r is a zero of f (x) .
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We use direct proof on each.

PROOF
Let anxn+ an−1xn−1+ · · · + a1x+ a0 be a polynomial and assume that the
coefficients are real numbers. Denote the polynomial by f (x).
∙ Let r be a zero of f (x). By definition, this means f (r) = 0, so r is a
solution to f (x) = 0.

∙ Suppose r is a solution to f (x) = 0. The polynomial division algo-
rithm (2.18) gives polynomials q(x) and r(x) such that

f (x) = q(x)(x − r) + r(x)

and the degree of r(x) is less than 1 (2.19). Hence, r(x) is a constant
that we simply write as c. Now,

0 = f (r) = q(r)(r − r) + c = 0 + c = c.

Therefore, f (x) = q(x)(x − r), so x − r is a factor of f (x).
∙ Lastly, assume x− r is a factor of f (x). This means that there exists
a polynomial q(x) so that

f (x) = (x − r)q(x).

Thus,
f (r) = (r − r)q(r) = 0,

which means r is a zero of f (x).

Proof of Disunctions

The second type of proof that relies on direct proof is the proof of a disjunction. To
prove p∨q, it is standard to assume ¬p and show q. This means that we would be using
direct proof to show ¬p→ q. This is what we want because

¬p→ q ⇔ ¬¬p ∨ q ⇔ p ∨ q.

The intuition behind the strategy goes like this. If we need to prove p ∨ q from some
hypotheses, it is not reasonable to believe that we can simply prove p and then use
Addition to conclude p ∨ q. Indeed, if we could simply prove p, we would expect the
conclusion to be stated as p and not p∨q. Hence, we need to incorporate both disjuncts
into the proof. We do this by assuming the negation of one of the disjuncts. If we can
prove the other, the disjunction must be true.
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EXAMPLE 2.4.25

To prove
for all integers a and b, if ab = 0, then a = 0 or b = 0,

we assume ab = 0 and show that a ≠ 0 implies b = 0.
PROOF
Let a and b be integers. Let ab = 0 and suppose a ≠ 0. Then, a−1 exists.
Multiplying both sides of the equation by a−1 gives

a−1ab = a−1 ⋅ 0,

so b = 0.

Proof by Cases

The last type of proof that relies on direct proof is proof by cases. Suppose that we
want to prove p → q and this is difficult for some reason. We notice, however, that p
can be broken into cases. Namely, there exist p0, p1,… , pn−1 such that

p⇔ p0 ∨ p1 ∨ · · · ∨ pn−1.

If we can prove pi → q for each i, we have proved p → q. If n = 2, then p ⇔ p0 ∨ p1,and the justification of this is as follows:
(p0 → q) ∧ (p1 → q)⇔ (¬p0 ∨ q) ∧ (¬p1 ∨ q)

⇔ (q ∨ ¬p0) ∧ (q ∨ ¬p1)
⇔ q ∨ ¬p0 ∧ ¬p1
⇔ ¬p0 ∧ ¬p1 ∨ q
⇔ ¬(p0 ∨ p1) ∨ q
⇔ p0 ∨ p1 → q
⇔ p→ q.

This generalizes to the next rule.
INFERENCE RULE 2.4.26 [Proof by Cases (CP)]

For every positive integer n, if p⇔ p0 ∨ p1 ∨ · · · ∨ pn−1, then
p0 → q, p1 → q,… , pn−1 → q ⇒ p→ q.

For example, since a is a real number if and only if a > 0, a = 0, or a < 0, if we
needed to prove a proposition about an arbitrary real number, it would suffice to prove
the result individually for a > 0, a = 0, and a < 0.
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EXAMPLE 2.4.27

Our example of a proof by cases is a well-known one:
for all integers a and b, if a = ±b, then a divides b and b divides a.

The antecedent means a = b or a = −b, which are the two cases, so we have to
show both

if a = b, then a divides b and b divides a

and
if a = −b, then a divides b and b divides a.

This leads to the following structure:
→Suppose a = ±b

Thus, a = b or a = −b
(Case 1) →Assume a = b

⋮
a divides b and b divides a

(Case 2) →Assume a = −b
⋮

a divides b and b divides a
∴ a divides b and b divides a

The final proof looks something like this.
PROOF
Let a and b be integers and suppose a = ±b. To show a divides b and b
divides a, we have two cases to prove.
∙ Assume a = b. Then, a = b ⋅ 1 and b = a ⋅ 1.
∙ Next assume a = −b. This means that a = b ⋅ (−1) and b = a ⋅ (−1).

In both the cases, we have proved that a divides b and b divides a.

Exercises

1. Let n be an integer. Demonstrate that each of the following are divisible by 6.
(a) 18
(b) −24
(c) 0
(d) 6n + 12
(e) 23 ⋅ 34 ⋅ 75

(f) (2n + 2)(3n + 6)

2. Let a be a nonzero integer. Write paragraph proofs for each proposition.
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(a) 1 divides a.
(b) a divides 0.
(c) a divides a.

3. Write a universal proof for each proposition.
(a) For all real numbers x, (x + 2)2 = x2 + 4x + 4.
(b) For all integers x, x − 1 divides x3 − 1.
(c) The square of every even integer is even.

4. Show why a proof of (∀x)p(x) is an application of direct proof.
5. Write existential proofs for each proposition.

(a) There exists a real number x such that x − � = 9.
(b) There exists an integer x such that x2 + 2x − 3 = 0.
(c) The square of some integer is odd.

6. Prove each of the following by writing a paragraph proof.
(a) For all real numbers x, y, and z, x2z + 2xyz + y2z = z(x + y)2.
(b) There exist real numbers u and v such that 2u + 5v = −29.
(c) For all real numbers x, there exists a real number y so that x − y = 10.
(d) There exists an integer x such that for all integers y, yx = x.
(e) For all real numbers a, b, and c, there exists a complex number x such that

ax2 + bx + c = 0.
(f) There exists an integer that divides every integer.

7. Provide counterexamples for each of the following false propositions.
(a) Every integer is a solution to x + 1 = 0.
(b) For every integer x, there exists an integer y such that xy = 1.
(c) The product of any two integers is even.
(d) For every integer n, if n is even, then n2 is a multiple of eight.

8. Assuming that a, b, c, and d are integers with a ≠ 0 and c ≠ 0, give paragraph
proofs using direct proof for the following divisibility results.

(a) If a divides b, then a divides bd.
(b) If a divides b and a divides d, then a2 divides bd.
(c) If a divides b and c divides d, then ac divides bd.
(d) If a divides b and b divides c, then a divides c.

9. Write paragraph proofs using direct proof.
(a) The sum of two even integers is even.
(b) The sum of two odd integers is even.
(c) The sum of an even and an odd is odd.
(d) The product of two even integers is even.
(e) The product of two odd integers is odd.
(f) The product of an even and an odd is even.

10. Let a and b be integers. Write paragraph proofs.
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(a) If a and b are even, then a4 + b4 + 32 is divisible by 8.
(b) If a and b are odd, then 4 divides a4 + b4 + 6.

11. Prove the following by using direct proof to prove the contrapositive.
(a) For every integer n, if n4 is even, then n is even.
(b) For all integers n, if n3 + n2 is odd, then n is odd.
(c) For all integers a and b, if ab is even, then a is even or b is even.

12. Write paragraph proofs.
(a) The equation x − 10 = 23 has a unique solution.
(b) The equation√2x − 5 = 2 has a unique solution.
(c) For every real number y, the equation 2x + 5y = 10 has a unique solution.
(d) The equation x2 + 5x + 6 = 0 has at most two integer solutions.

13. From the proof of Example 2.4.14, prove that q > q′ and u < m.
14. Prove the results of Exercise 9 indirectly.
15. Prove using the method of biconditional proof.

(a) p ∨ q → ¬r, s→ r, ¬p ∨ q → s ⊢ p↔ ¬s
(b) p ∨ (¬q ∨ p), q ∨ (¬p ∨ q) ⊢ p↔ q
(c) (p→ q) ∧ (r → s), (p→ ¬s) ∧ (r → ¬q), p ∨ r ⊢ q ↔ ¬s
(d) p ∧ r→ ¬(s ∨ t), ¬s ∨ ¬t → p ∧ r ⊢ s↔ t

16. Prove using the short rule of biconditional proof.
(a) p→ q ∧ r⇔ (p→ q) ∧ (p → r)
(b) p→ q ∨ r⇔ p ∧ ¬q → r
(c) p ∨ q → r⇔ (p→ r) ∧ (q → r)
(d) p ∧ q → r⇔ (p→ r) ∨ (q → r)

17. Let a, b, c, and d be integers. Write paragraph proofs using biconditional proof.
(a) a is even if and only if a2 is even.
(b) a is odd if and only if a + 1 is even.
(c) a is even if and only if a + 2 is even.
(d) a3 + a2 + a is even if and only if a is even.
(e) If c ≠ 0, then a divides b if and only if ac divides bc.

18. Suppose that a and b are integers. Prove that the following are equivalent.
∙ a divides b.
∙ a divides −b.
∙ −a divides b.
∙ −a divides −b.

19. Let a be an integer. Prove that the following are equivalent.
∙ a is divisible by 3.
∙ 3a is divisible by 9.
∙ a + 3 is divisible by 3.
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20. Prove by using direct proof but do not use the contrapositive: for all integers a and
b, if ab is even, then a is even or b is even.
21. Prove using proof by cases (Inference Rule 2.4.26).

(a) For all integers a, if a = 0 or b = 0, then ab = 0.
(b) The square of every odd integer is of the form 8k + 1 for some integer k.

(Hint: Square 2l + 1. Then consider two cases: l is even and l is odd.)
(c) a2 + a + 1 is odd for every integer a.
(d) The fourth power of every odd integer is of the form 16k+1 for some integer

k.
(e) Every nonhorizontal line intersects the x-axis.

22. Let a be an integer. Prove by cases.
(a) 2 divides a(a + 1)
(b) 3 divides a(a + 1)(a + 2)

23. For any real number c, the absolute value of c is defined as

|c| =

{

c if c ≥ 0,
−c if c < 0.

Let a be a positive real number. Prove the following about absolute value for every real
number x.

(a) | − x| = |x|
(b) |x2| = |x|2

(c) x ≤ |x|
(d) |xy| = |x| |y|
(e) |x| < a if and only if −a < x < a.
(f) |x| > a if and only if x > a or x < −a.

24. Take a and b to be nonzero integers and prove the given propositions.
(a) a divides 1 if and only if a = ±1.
(b) If a = ±b, then |a| = |b|.



CHAPTER 3

SET THEORY

3.1 SETS AND ELEMENTS

The development of logic that resulted in the work of Chapters 1 and 2 went through
many stages and benefited from the work of various mathematicians and logicians
through the centuries. Although modern logic can trace its roots to Descartes with
his mathesis universalis and Gottfried Leibniz’s De Arte Combinatoria (1666), the
beginnings of modern symbolic logic is generally attributed to Augustus De Morgan
[Formal Logic (1847)], George Boole [Mathematical Analysis of Logic (1847) and An
Investigation of the Laws of Thought (1847)], and Frege [Begriffsschrift (1879), Die
Grundlagen der Arithmetik (1884), and Grundgesetze der Arithmetik (1893)]. How-
ever, when it comes to set theory, it was Georg Cantor who, with his first paper, “Ueber
eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen” (1874), and over a
decade of research, is the founder of the subject. For the next four chapters, Cantor’s
set theory will be our focus.

A set is a collection of objects known as elements. An element can be almost any-
thing, such as numbers, functions, or lines. A set is a single object that can contain
many elements. Think of it as a box with things inside. The box is the set, and the
things are the elements. We use uppercase letters to label sets, and elements will usu-
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ally be represented by lowercase letters. The symbol∈ (fashioned after the Greek letter
epsilon) is used to mean “element of,” so if A is a set and a is an element of A, write
∈aA or, the more standard, a ∈ A. The notation a, b ∈ A means a ∈ A and b ∈ A. If
c is not an element of A, write c ∉ A. If A contains no elements, it is the empty set. It
is represented by the symbol ∅. Think of the empty set as a box with no things inside.

Rosters

Since the elements are those that distinguish one set from another, one method that
is used to write a set is to list its elements and surround them with braces. This is
called the roster method of writing a set, and the list is known as a roster. The braces
signify that a set has been defined. For example, the set of all integers between 1 and
10 inclusive is

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Read this as “the set containing 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.” The set of all integers
between 1 and 10 exclusive is

{2, 3, 4, 5, 6, 7, 8, 9}.

If the roster is too long, use ellipses (… ). When there is a pattern to the elements of
the set, write down enough members so that the pattern is clear. Then use the ellipses
to represent the continuing pattern. For example, the set of all integers inclusively
between 1 and 1,000,000 can be written as

{1, 2, 3,… , 999,999, 1,000,000}.
Follow this strategy to write infinite sets as rosters. For instance, the set of even integers
can be written as

{… ,−4,−2, 0, 2, 4,…}.

EXAMPLE 3.1.1

∙ As a roster, { } denotes the empty set. Warning: Never write {∅} for the empty
set. This set has one element in it.

∙ A set that contains exactly one element is called a singleton. Hence, the sets {1},
{f}, and {∅} are singletons written in roster form. Also, 1 ∈ {1}, f ∈ {f},
and ∅ ∈ {∅}.

∙ The set of linear functions that intersect the origin with an integer slope can be
written as:

{… ,−2x,−x, 0, x, 2x,…}.

(Note: Here 0 represents the function f (x) = 0.)

LetA andB be sets. These are equal if they contain exactly the same elements. The
notation for this isA = B. What this means is if any element is inA, it is also in B, and
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conversely, if an element is in B, it is in A. To fully understand set equality, consider
again the analogy between sets and boxes. Suppose that we have a box containing a
carrot and a rabbit. We could describe it with the phrase the box that contains the
carrot and the rabbit. Alternately, it could be referred to as the box that contains the
orange vegetable and the furry, cotton-tailed animal with long ears. Although these
are different descriptions, they do not refer to different boxes. Similarly, the set {1, 3}
and the set containing the solutions of (x−1)(x−3) = 0 are equal because they contain
the same elements. Furthermore, the order in which the elements are listed does not
matter. The box can just as easily be described as the box with the rabbit and the carrot.
Likewise, {1, 3} = {3, 1}. Lastly, suppose that the box is described as containing the
carrot, the rabbit, and the carrot, forgetting that the carrot had already been mentioned.
This should not be confusing, for one understands that such mistakes are possible. It is
similar with sets. A repeated element does not add to the set. Hence, {1, 3} = {1, 3, 1}.

Famous Sets

Although sets can contain many different types of elements, numbers are probably the
most common for mathematics. For this reason particular important sets of numbers
have been given their own symbols.

Symbol Name
N The set of natural numbers
Z The set of integers
Q The set of rational numbers
R The set of real numbers
C The set of complex numbers

As rosters,
N = {0, 1, 2,…}

and
Z = {… ,−2,−1, 0, 1, 2,…}.

Notice that we define the set of natural numbers to include zero and do not make a
distinction between counting numbers and whole numbers. Instead, write

Z+ = {1, 2, 3,…}

and
Z− = {… ,−3,−2,−1}.

EXAMPLE 3.1.2

∙ 10 ∈ Z+, but 0 ∉ Z+.
∙ 4 ∈ N, but −5 ∉ N.
∙ −5 ∈ Z, but .65 ∉ Z.
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∙ .65 ∈ Q and 1∕2 ∈ Q, but � ∉ Q.
∙ � ∈ R, but 3 − 2i ∉ R.
∙ 3 − 2i ∈ C.

Of the sets mentioned above, the real numbers are probably the most familiar. It
is the set of numbers most frequently used in calculus and is often represented by a
number line. The line can be subdivided into intervals. Given two endpoints, an
interval includes all real numbers between the endpoints and possibly the endpoints
themselves. Interval notation is used to name these sets. A parenthesis next to an
endpoint means that the endpoint is not included in the set, while a bracket means that
the endpoint is included. If the endpoints are included, the interval is closed. If they
are excluded, the interval is open. If one endpoint is included and the other is not, the
interval is half-open. If the interval has only one endpoint, then the set is called a ray
and is defined using the infinity symbol (∞), with or without the negative sign.

DEFINITION 3.1.3

Let a, b ∈ R such that a < b.
closed interval [a, b] closed ray [a,∞)
open interval (a, b) closed ray (−∞, a]
half-open interval [a, b) open ray (a,∞)
half-open interval (a, b] open ray (−∞, a)

EXAMPLE 3.1.4

We can describe (4, 7) as
the interval of real numbers between 4 and 7 exclusive

and [4, 7] as
all real numbers between 4 and 7 inclusive.

There is not a straightforward way to name the half-open intervals. For (4, 7], we
can try

the set of all real numbers x such that 4 < x ≤ 7

or
the set of all real numbers greater than 4 and less than or equal to 7.

The infinity symbol does not represent a real number, so a parenthesis must be used
with it. Furthermore, the interval (−∞,∞) can be used to denote R.
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0 3−1−4 1−2−3 42

(a) (−1, 3]

0 3−1−4 1−2−3 42

(b) (−∞, 2]

Figure 3.1 A half-open interval and a closed ray.

EXAMPLE 3.1.5

The interval (−1, 3] contains all real numbers that are greater than −1 but less
than or equal to 3 [Figure 3.1(a)]. A common mistake is to equate (−1, 3] with
{0, 1, 2, 3}. It is important to remember that (−1, 3] includes all real numbers
between −1 and 3. Hence, this set is infinite, as is (−∞, 2). It contains all real
numbers less than 2 [Figure 3.1(b)].

EXAMPLE 3.1.6

Let p(x) := x + 2 = 7. Since p(5) and there is no other real number a such that
p(a), there exists a unique x ∈ R such that p(x). However, if a is an element of
Z− or (−∞, 5), then ¬p(a).

EXAMPLE 3.1.7

If q(x) := x ≥ 10, then q(x) for all x ∈ [20, 100], there exists x ∈ Q such that
¬q(x), and there is no element a of {1, 2, 3} such that q(a).

Abstraction

When trying to write sets as rosters, we quickly discover issues with the technique.
Since the rational numbers are defined using integers, we suspect thatQ can be written
as a roster, but when we try to begin a list, such as

1, 1
2
, 1
3
,… , 2, 2

3
,… ,

we realize that there are complications with the pattern and are not quite sure that the
we will exhaust them all. When considering R, we know immediately that a roster is
out of the question. We conclude that we need another method.

Fix a first-order alphabet with theory symbols S. Let A be a set and S-formula p(x)
have the property that for every a,

a ∈ A⇔ p(a).

Notice that p(x) completely describes the members of A. Namely, whenever we write
a ∈ A, we can also write p(a), and, conversely, whenever we write p(a), we can also
write a ∈ A. For example, let E be the set of even integers. As a roster,

E = {… ,−4,−2, 0, 2, 4,…}.
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Let p(x) denote the formula
∃n(n ∈ Z ∧ x = 2n). (3.1)

The even integers are exactly those numbers x such that p(x). In particular, we have
p(2) and p(−4) but not p(5). Therefore, 2 and −4 are elements of E, but 5 is not.

DEFINITION 3.1.8

Let A be a first-order alphabet with theory symbols S. Let p(x) be an S-formula
and A be a set. Write A = {x : p(x)} to mean

a ∈ A⇔ p(a).

Using {x : p(x)} to identify A is called the method of abstraction.
Using Definition 3.1.8 and (3.1), write E using abstraction as

E = {x : ∃n(n ∈ Z ∧ x = 2n)}

or
E = {x : p(x)}.

Read this as “the set of x such that p(x).” Because x = 2n, it is customary to remove x
from the definition of sets like E and write

E = {2n : ∈nZ},
or

E = {2n : n ∈ Z}.

Read this as “the set of all 2n such that n is an integer.” This simplified notation is still
considered abstraction. Its form can be summarized as

{elements : condition}.
That is, what the elements look like come before the colon, and the condition that must
be satisfied to be an element of the set comes after the colon.

EXAMPLE 3.1.9

Given the quadratic equation x2 − x − 2 = 0, we know that its solutions are −1
and 2. Thus, its solution set is A = {−1, 2}. Using the method of abstraction,
this can be written as

A = {x : − − ⋅ xxx2 = 0 ∧ ∈xR}.
However, as we have seen, it is customary to write the formula so that it is easier
to read, so

A : x2 − x − 2 = 0 ∧ x ∈ R},
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or, using a common notation,
A{x ∈ R : x2 − x − 2 = 0}.

Therefore, given an arbitrary polynomial f (x), its solution set over the real num-
bers is

{x ∈ R : f (x) = 0}.

EXAMPLE 3.1.10

Since x ∉ ∅ is always true, to write the empty set using abstraction, we use a
formula like x ≠ x or a contradiction like P ∧ ¬P , where P is a propositional
form. Then,

∅ = {x ∈ R : x ≠ x} = {x : P ∧ ¬P }.

EXAMPLE 3.1.11

Using the natural numbers as the starting point, Z and Q can be defined using
the abstraction method by writing

Z = {n : n ∈ N ∨ −n ∈ N}

and
Q =

{a
b
: a, b ∈ Z ∧ b ≠ 0

}

.

Notice the redundancy in the definition ofQ. The fraction 1∕2 is named multiple
times like 2∕4 or 9∕18, but remember that this does not mean that the numbers
appear infinitely many times in the set. They appear only once.

EXAMPLE 3.1.12

The open intervals can be defined using abstraction.
(a, b) = {x ∈ R : a < x < b},
(a,∞) = {x ∈ R : a < x},
(−∞, b) = {x ∈ R : x < a}.

See Exercise 9 for the closed and half-open intervals. Also, as with Z+ and Z−,
the superscript + or − is always used to denote the positive or negative numbers,
respectively, of a set. For example,

R+ = {x ∈ R : x > 0}
and

R− = {x ∈ R : x < 0}.
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EXAMPLE 3.1.13

Each of the following are written using the abstraction method and, where ap-
propriate, as a roster.

∙ The set of all rational numbers with denominator equal to 3 in roster form
is

{

… ,−3
3
,−2
3
,−1
3
, 0
3
, 1
3
, 2
3
, 3
3
,…

}

.

Using abstraction, it is
{n
3
: n ∈ Z

}

.

∙ The set of all linear polynomials with integer coefficients and leading co-
efficient equal to 1 is

{… , x − 2, x − 1, x, x + 1, x + 2,…}.

Using abstraction it is
{x + n : n ∈ Z}.

∙ The set of all polynomials of degree at most 5 can be written as
{a5x5 + · · · + a1x + a0 : ai ∈ R ∧ i = 0, 1,… , 5}.

Exercises

1. Determine whether the given propositions are true or false.
(a) 0 ∈ N
(b) 1∕2 ∈ Z
(c) −4 ∈ Q
(d) 4 + � ∈ R
(e) 4.34534 ∈ C
(f) {1, 2} = {2, 1}
(g) {1, 2} = {1, 2, 1}
(h) [1, 2] = {1, 2}
(i) (1, 3) = {2}
(j) −1 ∈ (−∞,−1)
(k) −1 ∈ [−1,∞)
(l) ∅ ∈ (−2, 2)
(m) ∅ ∈ ∅
(n) 0 ∈ ∅

2. Write the given sets as rosters.
(a) The set of all integers between 1 and 5 inclusive
(b) The set of all odd integers
(c) The set of all nonnegative integers
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(d) The set of integers in the interval (−3, 7]
(e) The set of rational numbers in the interval (0, 1) that can be represented with

exactly two decimal places
3. If possible, find an element a in the given set such that a + 3.14 = 0.

(a) Z
(b) R
(c) R+
(d) R−
(e) Q
(f) C
(g) (0, 6)
(h) (−∞,−1)

4. Determine whether the following are true or false.
(a) 1 ∈ {x : p(x)} when ¬p(1)
(b) 7 ∈ {x ∈ R : x2 − 5x − 14 = 0}
(c) 7x2 − 0.5x ∈ {a2x2 + a1x + a0 : ai ∈ Q}
(d) xy ∈ {2k : k ∈ Z} if x is even and y is odd.
(e) cos � ∈ {a cos � + b sin � : a, b ∈ R}
(f) {1, 3} = {x : (x − 1)(x − 3) = 0}
(g) {1, 3} = {x : (x − 1)(x − 3)2 = 0}
(h) {[ a 0

0 0
] : a ∈ R

}

=
{[ x 0

0 y
] : x ∈ R and y = 0}

5. Write the following given sets in roster form.
(a) {−3n : n ∈ Z}
(b) {0 ⋅ n : n ∈ R}
(c) {n cos x : n ∈ Z}
(d) {ax2 + ax + a : a ∈ N}
(e) {[ n 0

0 0
] : n ∈ Z

}

6. Use a formula to uniquely describe the elements in the following sets. For example,
x ∈ N if and only if x ∈ Z ∧ x ≥ 0.

(a) (0, 1)
(b) (−3, 3]
(c) [0,∞)
(d) Z+
(e) {… ,−2,−1, 0, 1, 2,…}
(f) {2a, 4a, 6a,…}

7. Write each set using the method of abstraction.
(a) All odd integers
(b) All positive rational numbers
(c) All integer multiples of 7
(d) All integers that have a remainder of 1 when divided by 3
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(e) All ordered pairs of real numbers in which the x-coordinate is positive and
the y-coordinate is negative

(f) All complex numbers whose real part is 0
(g) All closed intervals that contain �
(h) All open intervals that do not contain a rational number
(i) All closed rays that contain no numbers in (−∞, 3]
(j) All 2 × 2 matrices with real entries that have a diagonal sum of 0
(k) All polynomials of degree at most 3 with real coefficients

8. Write the given sets of real numbers using interval notation.
(a) The set of real numbers greater than 4
(b) The set of real numbers between −6 and −5 inclusive
(c) The set of real numbers x so that x < 5
(d) The set of real numbers x such that 10 < x ≤ 14

9. Let a, b ∈ R with a < b. Write the given intervals using the abstraction method.
(a) [a, b]
(b) [a,∞)
(c) (−∞, b]
(d) (a, b]

3.2 SET OPERATIONS

We now use connectives to define the set operations. These allow us to build new sets
from given ones.

Union and Intersection

The first set operation is defined using the ∨ connective.
DEFINITION 3.2.1

The union of A and B is

A ∪ B = {x : x ∈ A ∨ x ∈ B}.

The union of sets can be viewed as the combination of all elements from the sets. On
the other hand, the next set operation is defined with ∧ and can be considered as the
overlap between the given sets.

DEFINITION 3.2.2

The intersection of A and B is

A ∩ B = {x : x ∈ A ∧ x ∈ B}.
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A B

U

(a) A ∪ B

U

A B

(b) A ∩ B

Figure 3.2 Venn diagrams for union and intersection.

For example, if A = {1, 2, 3, 4} and B = {3, 4, 5, 6}, then
A ∪ B = {1, 2, 3, 4, 5, 6}

and
A ∩ B = {3, 4}.

The operations of union and intersection can be illustrated with pictures calledVenn
diagrams, named after the logician John Venn who used a variation of these drawings
in his text on symbolic logic (Venn 1894). First, assume that all elements are members
of a fixed universe U (page 97). In set theory, the universe is considered to be the
set of all possible elements in a given situation. Use circles to represent sets and a
rectangle to representU . The space inside these shapes represent where elements might
exist. Shading is used to represent where elements might exist after applying some set
operations. The Venn diagram for union is in Figure 3.2(a) and the one for intersection
is in Figure 3.2(b). If sets have no elements in their intersection, we can use the next
definition to name them.

DEFINITION 3.2.3

The sets A and B are disjoint or mutually exclusive when A ∩ B = ∅.
The sets {1, 2, 3} and {6, 7} are disjoint. A Venn diagram for two disjoint sets is given
in Figure 3.3.

Set Difference

The next two set operations take all of the elements of one set that are not in another.
They are defined using the not connective.

DEFINITION 3.2.4

The set difference of B from A is
A ⧵ B = {x : x ∈ A ∧ x ∉ B}.
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U

A

B

Figure 3.3 A Venn diagram for disjoint sets.

The complement of A is defined as
A = U ⧵ A = {x : x ∈ U ∧ x ∉ A}.

Read A ⧵B as “Aminus B” or “A without B.” See Figure 3.4(a) for the Venn diagram
of the set difference of sets and Figure 3.4(b) for the complement of a set.

EXAMPLE 3.2.5

The following equalities use set difference.
∙ N = Z ⧵ Z−

∙ The set of irrational numbers is R ⧵Q.
∙ R = C ⧵ {a + bi : a, b ∈ R ∧ b ≠ 0}

U

A B

(a) A ⧵ B

U

A

(b) A

Figure 3.4 Venn diagrams for set difference and complement.
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EXAMPLE 3.2.6

Let U = {1, 2,… , 10}. Use a Venn diagram to find the results of the set op-
erations on A = {1, 2, 3, 4, 5} and B = {3, 4, 5, 6, 7, 8}. Each element will be
represented as a point and labeled with a number.

U

A B

1

109

8

7

6

5
4
3

2

∙ A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}

∙ A ∩ B = {3, 4, 5}

∙ A ⧵ B = {1, 2}

∙ A = {6, 7, 8, 9, 10}

EXAMPLE 3.2.7

Let C = (−4, 2), D = [−1, 3], and U = R. Use the diagram to perform the set
operations.

0 3−1−4 1−2−3 42

0 3−1−4 1−2−3 42

C ∪ D

C  D

C ∩ D

∙ C ∪D = (−4, 3]

∙ C ∩D = [−1, 2)

∙ C ⧵D = (−4,−1)

∙ C = (−∞,−4] ∪ [2,∞)
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Cartesian Products

The last set operation is not related to the logic connectives as the others, but it is
nonetheless very important to mathematics. Let A and B be sets. Given elements
a ∈ A and b ∈ B, we call (a, b) an ordered pair. In this context, a and b are called
coordinates. It is similar to the set {a, b} except that the order matters. The definition
is due to Kazimierz Kuratowski (1921).

DEFINITION 3.2.8

If a ∈ A and b ∈ B,
(a, b) = {{a}, {a, b}}.

Notice that (a, b) = (a′, b′) means that
{{a}, {a, b}} = {{a′}, {a′, b′}},

which implies that a = a′ and b = b′. Therefore,
(a, b) = (a′, b′) if and only if a = a′ and b = b′.

The set of all ordered pairs with the first coordinate from A and the second from B
is named after René Descartes.

DEFINITION 3.2.9

The Cartesian product of A and B is
A × B = {(a, b) : a ∈ A ∧ b ∈ B}.

The product R2 = R × R is the set of ordered pairs of the Cartesian plane.
EXAMPLE 3.2.10

∙ Since (1, 2) ≠ (2, 1),
{1, 2} × {0, 1, 2} = {(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

Even though we have a set definition for an ordered pair, we can still visually
represent this set on a grid as in Figure 3.5(a).

∙ If A = {1, 2, 7} and B = {∅, {1, 5}},
A × B = {(1,∅), (1, {1, 5}), (2,∅), (2, {1, 5}), (7,∅), (7, {1, 5})}.

See Figure 3.5(b).
∙ For any set A, ∅ × A = A ×∅ = ∅ because ¬∃x(x ∈ ∅ ∧ y ∈ A).
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1 2
0

1

2

(1, 2)

(a) {1, 2} × {0, 1, 2}
1 2 7

{1, 5}

∅

(2, {1, 5})

(7, ∅)

(b) {1, 2, 7} × {∅, {1, 5}}

Figure 3.5 Two Cartesian products.

We generalize Definition 3.2.8 by defining
(a, b, c) = {{a}, {a, b}, {a, b, c}},

(a, b, c, d) = {{a}, {a, b}, {a, b, c}, {a, b, c, d}},

and for n ∈ N,
(a0, a1,… , an−1) = {{a0}, {a0, a1},… , {a0, a1,… , an−1}},

which is called an ordered n-tuple. Then,
A × B × C = {(a, b, c) : a ∈ A ∧ b ∈ B ∧ c ∈ C},

A × B × C ×D = {(a, b, c, d) : a ∈ A ∧ b ∈ B ∧ c ∈ C ∧ d ∈ D},
and

An = {(a0, a1,… , an−1) : ai ∈ A ∧ i = 0, 1,… , n − 1}.

Specifically, R3 = R × R × R, and
Rn = R × R × · · · × R

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
n times

,

which is known as Cartesian n-space.
EXAMPLE 3.2.11

Let A = {1}, B = {2}, C = {3}, and D = {4}. Then,
A × B × C ×D = {(1, 2, 3, 4)}

is a singleton containing an ordered 4-tuple. Also,
(A × B) ∪ (C ×D) = {(1, 2), (3, 4)},

but
A × (B ∪ C) ×D = {(1, 2, 4), (1, 3, 4)}.
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Order of Operations

As with the logical connectives, we need an order to make sense of expressions that
involve many operations. To do this, we note the association between the set operations
and certain logical connectives.

A
A ⧵ B

}

¬

A ∩ B ∧
A ∪ B ∨

From this we derive the order for the set operations.
DEFINITION 3.2.12 [Order of Operations]

To find a set determined by set operations, read from left to right and use the
following precedence.

∙ sets within parentheses (innermost first),

∙ complements,

∙ set differences,

∙ intersections,

∙ unions.

EXAMPLE 3.2.13

If the universe is taken to be {1, 2, 3, 4, 5}, then

{5} ∪ {1, 2} ∩ {2, 3} = {5} ∪ {3, 4, 5} ∩ {2, 3} = {5} ∪ {3} = {3, 5}

This set can be written using parentheses as

{5} ∪ ({1, 2} ∩ {2, 3}).

However,
({5} ∪ {1, 2}) ∩ {2, 3} = ({5} ∪ {3, 4, 5}) ∩ {2, 3} = {3, 4, 5} ∩ {2, 3} = {3},

showing that

{5} ∪ {1, 2} ∩ {2, 3} ≠ ({5} ∪ {1, 2}) ∩ {2, 3}.
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EXAMPLE 3.2.14

Define A = {1}, B = {2}, C = {3}, and D = {4}. Then, we have
A ∪ B ∪ C ∪D = {1, 2, 3, 4}.

Written with parentheses and brackets,
A ∪ B ∪ C ∪D = ([(A ∪ B) ∪ C] ∪D).

With the given assignments, A ∩ B ∩ C ∩D is empty.

Exercises

1. Each of the given propositions are false. Replace the underlined word with another
word to make the proposition true.

(a) Intersection is defined using a disjunction.
(b) Set diagrams are used to illustrate set operations.
(c) R ⧵ (R ⧵Q) is the set of irrational numbers.
(d) Set difference has a higher order of precedence than complements.
(e) The complement of A is equal to R set minus A.
(f) The intersection of two intervals is always an interval.
(g) The union of two intervals is never an interval.
(h) A × B is equal to ∅ if B does not contain ordered pairs.

2. Let A = {0, 2, 4, 6}, B = {3, 4, 5, 6}, C = {0, 1, 2}, and U = {0, 1,… , 9, 10}.
Write the given sets in roster notation.

(a) A ∪ B
(b) A ∩ B
(c) A ⧵ B
(d) B ⧵ A
(e) A
(f) A × B
(g) A ∪ B ∩ C
(h) A ∩ B ∪ C
(i) A ∩ B
(j) A ∪ A ∩ B
(k) A ⧵ B ⧵ C
(l) A ∪ B ⧵ A ∩ C

3. Write each of the given sets using interval notation.
(a) [2, 3] ∩ (5∕2, 7

]

(b) (−∞, 4) ∪ (−6,∞)
(c) (−2, 4) ∩ [−6,∞)
(d) ∅ ∪ (4, 12]
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4. Identify each of the the given sets.
(a) [6, 17] ∩ [17, 32)
(b) [6, 17) ∩ [17, 32)
(c) [6, 17] ∪ (17, 32)
(d) [6, 17) ∪ (17, 32)

5. Draw Venn diagrams.
(a) A ∩ B
(b) A ∪ B
(c) A ∩ B ∪ C
(d) (A ∪ B) ⧵ C
(e) A ∩ C ∩ B
(f) A ⧵ B ∩ C

6. Match each Venn diagram to as many sets as possible.
(A) (B) (C)

(D) (E) (F)

(a) A ∪ B
(b) A ⧵ B
(c) A ∩ B
(d) (A ∪ B) ⧵ (A ∩ B)
(e) A ∩ B ∪ A ∩ C ∪ B ∩ C
(f) A ∩ B ∪ A ⧵ B
(g) (A ∪ B) ∩ (A ∪ B)
(h) [(A ∪ B) ∩ C] ∪ [(A ∪ B) ∩ C]
(i) [A ∩ B ∩ C] ∪ [A ∩ B ∩ C]
(j) A ⧵ (B ∪ C) ∩ B ⧵ (A ∪ C) ∩ C ⧵ (A ∪ B)

7. The ordered pair (1, 2) is paired with the ordered pair (2, 1) using a set operation.
Write each resulting set as a roster.

(a) (1, 2) ∪ (2, 1)
(b) (1, 2) ∩ (2, 1)
(c) (1, 2) ⧵ (2, 1)

8. Let p(x) be a formula. Prove the following.
(a) ∀x[x ∈ A ∪ B → p(x)]⇒ ∀x[x ∈ A ∩ B → p(x)]
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(b) ∀x[x ∈ A ∪ B → p(x)]⇔ ∀x[x ∈ A→ p(x)] ∧ ∀x[x ∈ B → p(x)]
(c) ∃x[x ∈ A ∩ B ∧ p(x)]⇒ ∃x[x ∈ A ∧ p(x)] ∧ ∃x[x ∈ B ∧ p(x)]
(d) ∃x[x ∈ A ∪ B ∧ p(x)]⇔ ∃x[x ∈ A ∧ p(x)] ∨ ∃x[x ∈ B ∧ p(x)]

9. Find a formula p(x) and sets A and B to show that the following are false.
(a) ∀x[x ∈ A→ p(x)] ∨ ∀x[x ∈ B → p(x)]⇒ ∀x[x ∈ A ∪ B → p(x)]
(b) ∃x[x ∈ A ∧ p(x)] ∧ ∃x[x ∈ B ∧ p(x)]⇒ ∃x[x ∈ A ∩ B ∧ p(x)]

3.3 SETS WITHIN SETS

An important relation between any two sets is when one is contained within another.

Subsets

Let A and B be sets. A is a subset of B exactly when every element of A is also an
element of B, in symbols A ⊆ B. This is represented in a Venn diagram by the circle
for A being within the circle for B [Figure 3.6(a)].

DEFINITION 3.3.1

For all sets A and B,
A ⊆ B ⇔ ∀x(x ∈ A→ x ∈ B).

If A is not a subset of B, write A * B. This is represented in a Venn diagram by A
overlapping B with a point inA but not within B [Figure 3.6(b)]. Logically, this means

A * B ⇔ ¬∀x(x ∈ A→ x ∈ B)⇔ ∃x(x ∈ A ∧ x ∉ B).

Thus, to show A * B find an element in A that is not in B. For example, if we let
A = {1, 2, 3} and B = {1, 2, 5}, then A * B because 3 ∈ A but 3 ∉ B.

U

A
B

(a) A ⊆ B

U

A B

a

(b) A * B

Figure 3.6 Venn diagrams for a subset and a nonsubset.
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EXAMPLE 3.3.2

The proposition for all sets A and B, A ∪ B ⊆ A is false. To see this, we must
prove that there exists A and B such that A ∪ B * A. We take A = {1} and
B = {2} as our candidates. SinceA∪B = {1, 2} and 2 ∉ A, we haveA∪B * A.
Every set is the improper subset of itself. The notation A ⊂ B means A ⊆ B but

A ≠ B. In this case, A is a proper subset of B.
EXAMPLE 3.3.3

∙ {1, 2, 3} ⊂ {1, 2, 3, 4, 5} and {1, 2, 3} ⊆ {1, 2, 3}
∙ N ⊂ Z ⊂ Q ⊂ R ⊂ C

∙ (4, 5) ⊂ (4, 5] ⊂ [4, 5]

∙ {1, 2, 3} is not a subset of {1, 2, 4}.

Our study of subsets begins with a fundamental theorem. It states that the empty set
is a subset of every set.

THEOREM 3.3.4

∅ ⊆ A.
PROOF

Let A be a set. Since x ∉ ∅, we have
∀x(x ∉ ∅ ∨ x ∈ A)⇔ ∀x(x ∈ ∅→ x ∈ A)⇔ ∅ ⊆ A.

Proving that one set is a subset of another always means proving an implication, so
Direct Proof is the primary tool in these proofs. That is, usually to prove that a set A is
a subset of a set B, take an element x ∈ A and show x ∈ B.

EXAMPLE 3.3.5

∙ Let x ∈ Z ⧵ N. Then, x ∈ Z but x ∉ N, so x ∈ Z by Simp. Thus, Z ⧵ N ⊆ Z.

∙ Let
A = {x : ∃n ∈ Z [(x − 2n)(x − 2n − 2) = 0]}

and
B = {2n : n ∈ Z}.

Take x ∈ A. This means that
∃n ∈ Z [(x − 2n)(x − 2n − 2) = 0] .

In other words,
(x − 2n)(x − 2n − 2) = 0
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for some n ∈ Z. Hence,
x − 2n = 0 or x − 2n − 2 = 0.

We have two cases to check. If x − 2n = 0, then x = 2n. This means x ∈ B. If
x−2n−2 = 0, then x = 2n+2 = 2(n+1), which also means x ∈ B since n+1
is an integer. Hence, A ⊆ B.

∙ Fix a, b ∈ Z. Let x = na, some n ∈ Z. This means x = na + 0b, which implies
that {na : n ∈ Z} ⊆ {na + mb : n, m ∈ Z}.

This next result is based only on the definitions and Inference Rules 1.2.10. As with
Section 3.2, we see the close ties between set theory and logic.

THEOREM 3.3.6

∙ A ⊆ A.
∙ If A ⊆ B and B ⊆ C , then A ⊆ C .
∙ If A ⊆ B and x ∈ A, then x ∈ B.
∙ If A ⊆ B and x ∉ B, then x ∉ A.
∙ Let A ⊆ B and C ⊆ D. If x ∈ A or x ∈ C , then x ∈ B or x ∈ D.
∙ Let A ⊆ B and C ⊆ D. If x ∉ B or x ∉ D, then x ∉ A or x ∉ C .

PROOF
Assume A ⊆ B and B ⊆ C . By definition, x ∈ A implies x ∈ B and x ∈ B
implies x ∈ C . Therefore, by HS, if x ∈ A, then x ∈ C . In other words, A ⊆ C .
The remaining parts are left to Exercise 4.
Note that it is not the case that for all sets A and B, A ⊆ B implies that B ⊆ A. To

prove this, choose A = ∅ and B = {0}. Then, A ⊆ B yet B * A because 0 ∈ B and
0 ∉ ∅.

Equality

For two sets to be equal, they must contain exactly the same elements (page 118 of
Section 3.1). This can be stated more precisely using the idea of a subset.

DEFINITION 3.3.7

A = B means A ⊆ B and B ⊆ A.
To prove that two sets are equal, we show both inclusions. Let us do this to prove

A ∪ B = A ∩ B. This is one of De Morgan’s laws. To prove it, we demonstrate both
A ∪ B ⊆ A ∩ B
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and
A ∩ B ⊆ A ∪ B.

This amounts to proving a biconditional, which means we will use the rule of bicondi-
tional proof. Look at the first direction:

x ∈ A ∪ B Given
¬(x ∈ A ∪ B) Definition of complement
¬(x ∈ A ∨ x ∈ B) Definition of union
x ∉ A ∧ x ∉ B De Morgan’s law
x ∈ A ∧ x ∈ B Definition of complement
x ∈ A ∩ B Definition of intersection

Now read backward through those steps. Each follows logically when read in this order
because only definitions and replacement rules were used. This means that the steps
are reversible. Hence, we have a series of biconditionals, and we can use the short rule
of biconditional proof (page 108):

x ∈ A ∪ B ⇔ ¬(x ∈ A ∪ B)
⇔ ¬(x ∈ A ∨ x ∈ B)
⇔ x ∉ A ∧ x ∉ B

⇔ x ∈ A ∧ x ∈ B

⇔ x ∈ A ∩ B.

Hence, A ∪ B = A ∩ B.
We must be careful when writing these types of proofs since it is easy to confuse

the notation.
∙ The correct translation for x ∈ A ∩ B is x ∈ A ∧ x ∈ B. Common mistakes for
this translation include using formulas with set operations:

x ∈ A  ∩  x ∈ B

Incorrect. A set should be on
either side of a set operation.

. . . and sets with connectives:
x ∈ A  ∧  B

Incorrect. A formula should
be present here.

Correct.
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Remember that connectives connect formulas and set operations connect sets.
∙ Negations also pose problems. If a complement is used, first translate using

x ∈ A⇔ x ∈ U ∧ x ∉ A⇔ x ∉ A

and then proceed with the proof. Similarly, the formula x ∉ A∪B can be written
as neither x ∉ A ∪ x ∉ B nor x ∉ A ∨ x ∉ B. Instead, use DeM:

x ∉ A ∪ B ⇔ ¬(x ∈ A ∪ B)
⇔ ¬(x ∈ A ∨ x ∈ B)
⇔ x ∉ A ∧ x ∉ B

⇔ x ∈ A ∩ B.

We can now prove many basic properties about set operations. Notice how the fol-
lowing are closely related to their corresponding replacement rules (1.3.9).

THEOREM 3.3.8

∙ Associative Laws
A ∩ B ∩ C = A ∩ (B ∩ C)
A ∪ B ∪ C = A ∪ (B ∪ C)

∙ Commutative Laws
A ∩ B = B ∩ A
A ∪ B = B ∪ A

∙ De Morgan’s Laws
A ∪ B = A ∩ B
A ∩ B = A ∪ B

∙ Distributive Laws
A ∩ (B ∪ C) = A ∩ B ∪ A ∩ C
A ∪ B ∩ C = (A ∪ B) ∩ (A ∪ C)

∙ Idempotent Laws
A ∩ A = A
A ∪ A = A.

EXAMPLE 3.3.9

We use the short rule of biconditional proof (page 108) to prove the equality
A ∩ B ∩ C = A ∩ (B ∩ C).

x ∈ A ∩ B ∩ C ⇔ x ∈ A ∩ B ∧ x ∈ C
⇔ x ∈ A ∧ x ∈ B ∧ x ∈ C
⇔ x ∈ A ∧ (x ∈ B ∧ x ∈ C)
⇔ x ∈ A ∧ (x ∈ B ∩ C)
⇔ x ∈ A ∩ (B ∩ C).
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Another way to prove it is to use a chain of equal signs.
A ∩ B ∩ C = {x : x ∈ A ∩ B ∧ x ∈ C}

= {x : x ∈ A ∧ x ∈ B ∧ x ∈ C}
= {x : x ∈ A ∧ (x ∈ B ∧ x ∈ C)}
= {x : x ∈ A ∧ x ∈ B ∩ C}
= A ∩ (B ∩ C).

We have to be careful when proving equality. If two sets are equal, there are always
proofs for both inclusions. However, the steps needed for the one implication might
not simply be the steps for the converse in reverse. The next example illustrates this.
It is always true that A ∩ B ⊆ A. However, the premise is needed to show the other
inclusion.

EXAMPLE 3.3.10

Let A ⊆ B. Prove A ∩ B = A.
∙ Let x ∈ A ∩ B. This means that x ∈ A and x ∈ B. Then, x ∈ A (Simp).
∙ Assume that x is an element of A. Since A ⊆ B, x is also an element of B.
Hence, x ∈ A ∩ B.

A more involved example of this uses the concept of divisibility. Let a, b ∈ Z, not
both equal to zero. A common divisor of a and b is c when c ∣ a and c ∣ b. For
example, 4 is a common divisor of 48 and 36, but it is not the largest.

DEFINITION 3.3.11

Let a, b ∈ Z with a and b not both zero. The integer g is the greatest common
divisor of a and b if g is a common divisor of a and b and e ≤ g for every common
divisor e ∈ Z. In this case, write g = gcd(a, b).

For example,
12 = gcd(48, 36)

and
7 = gcd(0, 7).

Notice that it is important that at least one of the integers is not zero. The gcd(0, 0) is
undefined since all a such that a ≠ 0 divide 0. Further notice that the greatest common
divisor is positive.

EXAMPLE 3.3.12

Let a, b ∈ Z. Prove for all n ∈ Z,
gcd(a + nb, b) = gcd(a, b).
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If both pairs of numbers have the same common divisors, their greatest common
divisors must be equal. So, define

S = {k ∈ Z : k ∣ a + nb ∧ k ∣ b}
and

T = {k ∈ Z : k ∣ a ∧ k ∣ b}.
To show that the greatest common divisors are equal, prove S = T .

∙ Let d ∈ S. Then d ∣ a+ nb and d ∣ b. This means a+ nb = dl and b = dk
for some l, k ∈ Z. We are left to show d ∣ a. By substitution, a+ndk = dl.
Hence, d ∈ T because

a = dl − ndk = d(l − nk).

∙ Now take d ∈ T . This means d ∣ a and d ∣ b. Thus, there exists l, k ∈ Z
such that a = dl and b = dk. Then,

a + nb = dl + ndk = d(l + nk).

Therefore, d ∣ a + nb and d ∈ S.

As with subsets, let us now prove some results concerning the empty set and the
universe. We use two strategies.

∙ Let A be a set. We know that
A = ∅ if and only if ∀x(x ∉ A).

Therefore, to prove thatA is empty, take an arbitrary a and show a ∉ A. This can
sometimes be done directly, but more often an indirect proof is better. That is,
assume a ∈ A and derive a contradiction. Since the contradiction arose simply
by assuming a ∈ A, this formula must be the problem. Hence, A can have no
elements.

∙ Let U be a universe. To prove A = U , we must show that A ⊆ U and U ⊆ A.
The first subset relation is always true. To prove the second, take an arbitrary el-
ement and show that it belongs to A. This works because U contains all possible
elements.

EXAMPLE 3.3.13

∙ Suppose x ∈ A ∩∅. Then x ∈ ∅, which is impossible. Therefore, A ∩∅ = ∅.
∙ Certainly, A ⊆ A ∪∅, so to show the opposite inclusion take x ∈ A ∪∅. Since
x ∉ ∅, it must be the case that x ∈ A. Thus, A ∪ ∅ ⊆ A, and we have that
A ∪∅ = A.

∙ From Exercise 5(b), we know A ∩U ⊆ A, so let x ∈ A. This means that x must
also belong to the universe. Hence, x ∈ A ∩ U , so A ∩ U = A.

∙ Certainly, A ∪U ⊆ U . Moreover, by Exercise 5(c), we have the other inclusion.
Thus, A ∪ U = U .
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EXAMPLE 3.3.14

To prove that a set A is not equal to the empty set, show ¬∀x(x ∉ A), but this is
equivalent to ∃x(x ∈ A). For instance, let

A = {x ∈ R : x2 + 6x + 5 = 0}.
We know that A is nonempty since −1 ∈ A.

EXAMPLE 3.3.15

Let
A = {(a, b) ∈ R × R : a + b = 0}

and
B = {(0, b) : b ∈ R}.

These sets are not disjoint since (0, 0) is an element of both A and B. However,
A ≠ B because (1,−1) ∈ A but (1,−1) ∉ B.

Let us combine the two strategies to show a relationship between ∅ and U .
THEOREM 3.3.16

For all sets A and B and universe U , the following are equivalent.
∙ A ⊆ B

∙ A ∪ B = U

∙ A ∩ B = ∅.
PROOF

∙ Assume A ⊆ B. Suppose x ∉ A. Then, x ∈ A, which implies that x ∈ B.
Hence, for every element x, we have that x ∈ A or x ∈ B, and we conclude that
A ∪ B = U .

∙ Suppose A ∪ B = U . In order to obtain a contradiction, take x ∈ A ∩ B.
Then, x ∈ B. Since x ∈ A, the supposition also gives x ∈ B, a contradiction.
Therefore, A ∩ B = ∅.

∙ Let A ∩ B = ∅. Assume x ∈ A. By hypothesis, x cannot be a member of B,
otherwise the intersection would be nonempty. Hence, x ∈ B.

The following theorem is a generalization of the corresponding result concerning
subsets. The proof could have been written using the short rule of biconditional proof
or by appealing to Lemma 3.3.6 (Exercise 21).

THEOREM 3.3.17

If A = B and B = C , then A = C .
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PROOF
Assume A = B and B = C . This means A ⊆ B, B ⊆ A, B ⊆ C , and C ⊆ B.
We must show that A = C .

∙ Let x ∈ A. By hypothesis, x is then an element of B, which implies that
x ∈ C .

∙ Let x ∈ C . Then, x ∈ B, from which x ∈ A follows.
The last result of the section involves the Cartesian product. The first part is illus-

trated in Figure 3.7. The sets B and C are illustrated along the vertical axis and A is
illustrated along the horizontal axis. The Cartesian products are represented as boxes.
The other parts of the theorem can be similarly visualized.

THEOREM 3.3.18

∙ A × (B ∩ C) = (A × B) ∩ (A × C).
∙ A × (B ∪ C) = (A × B) ∪ (A × C).
∙ A × (B ⧵ C) = (A × B) ⧵ (A × C).
∙ (A × B) ∩ (C ×D) = (A ∩ C) × (B ∩D).

PROOF
We prove the first equation. The last three are left to Exercise 19. Take three sets
A, B, and C . Then,

(a, b) ∈ A × (B ∩ C)⇔ a ∈ A ∧ b ∈ B ∩ C
⇔ a ∈ A ∧ b ∈ B ∧ a ∈ A ∧ b ∈ C
⇔ (a, b) ∈ A × B ∧ (a, b) ∈ A × C
⇔ (a, b) ∈ (A × B) ∩ (A × C).

A

C

B
A × B

A × C

A × (B ∩ C)

Figure 3.7 A × (B ∩ C) = (A × B) ∩ (A × C).
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Inspired by the last result, we might try proving that (A × B) ∪ (C × D) is always
equal to (A ∪ C) × (B ∪D), but no such proof exists. To show this, take A = B = {1}
and C = D = {2}. Then

(A ∪ C) × (B ∪D) = {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}.

but
(A × B) ∪ (C ×D) = {(1, 1)} ∪ {(2, 2)} = {(1, 1), (2, 2)},

Hence, (A ∪ C) × (B ∪ D) * (A × B) ∪ (C × D). Notice, however, that the opposite
inclusion is always true (Exercise 3.3.8).
Exercises

1. Answer true or false.
(a) ∅ ∈ ∅
(b) ∅ ⊆ {1}
(c) 1 ∈ Z
(d) 1 ⊆ Z
(e) 1 ∈ ∅
(f) {1} ⊆ ∅
(g) 0 ∈ ∅
(h) {1} ∈ Z
(i) ∅ ⊆ ∅

2. Answer true or false. For each false proposition, find one element that is in the first
set but is not in the second.

(a) Z+ ⊆ C
(b) Q+ ⊆ Z+
(c) Q ⧵ R ⊆ Z
(d) R ⧵Q ⊆ Z
(e) Z ∩ (−1, 1) ⊆ Q
(f) (0, 1) ⊆ Q+

(g) (0, 1) ⊆ {0, 1, 2}
(h) (0, 1) ⊆ (0, 1]

3. Prove.
(a) {x ∈ R : x2 − 3x + 2 = 0} ⊆ N
(b) (0, 1) ⊆ [0, 1]
(c) [0, 1] * (0, 1)
(d) Z × Z * Z × N
(e) (0, 1) ∩Q * [0, 1] ∩ Z
(f) R ⊆ C
(g) {bi : b ∈ R} ⊆ C
(h) C * R
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4. Prove the remaining parts of Theorem 3.3.6.
5. Prove.

(a) A ⊆ U
(b) A ∩ B ⊆ A
(c) A ⊆ A ∪ B
(d) A ⧵ B ⊆ A
(e) If A ⊆ B, then A ∪ C ⊆ B ∪ C .
(f) If A ⊆ B, then A ∩ C ⊆ B ∩ C .
(g) If A ⊆ B, then C ⧵ B ⊆ C ⧵ A.
(h) If A ≠ ∅, then A * A.
(i) If A ⊆ B, then B ⊆ A.
(j) If A ⊆ B, then {1} × A ⊆ {1} × B.
(k) If A ⊆ C and B ⊆ D, then A × B ⊆ C ×D.
(l) If A ⊆ C and B ⊆ D, then C ×D ⊆ A × B.

6. Prove that A ⊆ B if and only if B ⊆ A.
7. Show that the given proposition is false:

for all sets A and B, if A ∩ B ≠ ∅, then A * A ∩ B.

8. Prove: (A × B) ∪ (C ×D) ⊆ (A ∪ C) × (B ∪D).
9. Take a, b, c ∈ N. Let A = {n ∈ N : n ∣ a} and C = {n ∈ N : n ∣ c}. Suppose a ∣ b
and b ∣ c. Prove A ⊆ C .
10. Prove.

(a) B ⊆ A and C ⊆ A if and only if B ∪ C ⊆ A.
(b) A ⊆ B and A ⊆ C if and only if A ⊆ B ∩ C .

11. Prove the unproven parts of Theorem 3.3.8.
12. Prove each equality.

(a) ∅ = U
(b) U = ∅
(c) A ∩ A = ∅
(d) A ∪ A = U

(e) A = A
(f) A ⧵ A = ∅
(g) A ⧵∅ = A
(h) A ∩ B = B ⧵ A
(i) A ⧵ B = A ∩ B
(j) A ∪ B ∩ B = ∅
(k) A ∩ B ⧵ A = ∅
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13. Sketch a Venn diagram for each problem and then write a proof.
(a) A = A ∩ B ∪ A ∩ B
(b) A ∪ B = A ∪ A ∩ B
(c) A ⧵ (B ⧵ C) = A ∩ (B ∪ C)
(d) A ⧵ (A ∩ B) = A ⧵ B
(e) A ∩ B ∪ A ∩ B ∪ A ∩ B = A ∪ B
(f) (A ∪ B) ⧵ C = A ⧵ C ∪ B ⧵ C
(g) A ⧵ (B ⧵ C) = A ⧵ B ∪ A ∩ C
(h) A ⧵ B ⧵ C = A ⧵ (B ∪ C)

14. Prove.
(a) If A ⊆ B, then A ⧵ B = ∅.
(b) If A ⊆ ∅, then A = ∅.
(c) Let U be a universe. If U ⊆ A, then A = U .
(d) If A ⊆ B, then B ⧵ (B ⧵ A) = A.
(e) A × B = ∅ if and only if A = ∅ or

15. Let a, c, m ∈ Z and defineA = {a+mk : k ∈ Z} and B = {a+m(c+k) : k ∈ Z}.
Show A = B.
16. Prove A = B, where

A =
{[ a 0

0 b
] : a + b = 0 ∧ a, b ∈ R

}

and
B =

{[ a b
c d

] : a = −d ∧ b2 + c2 = 0 ∧ a, b, c, d ∈ R
}

.

17. Prove.
(a) Q ≠ Z
(b) C ≠ R
(c) {0} × Z ≠ Z
(d) R × Z ≠ Z × R
(e) If A = {ax3 + b : a, b ∈ R} and B = {x3 + b : b ∈ R}, then A ≠ B.
(f) If A = {ax3 + b : a, b ∈ Z} and B = {ax3 + b : a, b ∈ C}, then A ≠ B.
(g) A ≠ B, where

A =
{[ a 0

0 b
] : a, b ∈ R

}

and
B =

{[ a b
c d

] : a, b, c, d ∈ R
}

.

18. Find A and B to illustrate the given inequalities.
(a) A ⧵ B ≠ B ⧵ A
(b) (A × B) × C ≠ A × (B × C)
(c) A × B ≠ B × A

19. For the remaining parts of Theorem 3.3.18, draw diagrams as in Figure 3.7 and
prove the results.
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20. Is it possible for A = A? Explain.
21. Prove Theorem 3.3.17 by first using the short rule of biconditional proof and then
by directly appealing to Theorem 3.3.6.
22. Prove that the following are equivalent.

∙ A ⊆ B
∙ A ∪ B = B
∙ A ⧵ B = ∅
∙ A ∩ B = A

23. Prove that the following are equivalent.
∙ A ∩ B = ∅
∙ A ⧵ B = ∅
∙ A ⊆ B

24. Find an example of sets A, B, and C such that A ∩ B = A ∩ C but B ≠ C .
25. Does A ∪ B = A ∪ C imply B = C for all sets A and B? Explain.
26. Prove.

(a) If A ∪ B ⊆ A ∩ B, then A = B.
(b) If A ∩ B = A ∩ C and A ∪ B = A ∪ C , then B = C .

27. Prove that there is a cancellation lawwith the Cartesian product. Namely, ifA ≠ ∅
and A × B = A × C , then B = C.
28. When does A × B = C ×D imply that A = C and B = D?
29. Prove.

(a) If A ∪ B ≠ ∅, then A ≠ ∅ or B ≠ ∅.
(b) If A ∩ B ≠ ∅, then A ≠ ∅ and B ≠ ∅.

30. Find the greatest common divisors of each pair.
(a) 12 and 18
(b) 3 and 9
(c) 14 and 0
(d) 7 and 15

31. Let a be a positive integer. Find the following and prove the result.
(a) gcd(a, a + 1)
(b) gcd(a, 2a)
(c) gcd(a, a2)
(d) gcd(a, 0)
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3.4 FAMILIES OF SETS

The elements of a set can be sets themselves. We call such a collection a family of sets
and often use capital script letters to name them. For example, let

ℰ = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}. (3.2)
The set ℰ has three elements: {1, 2, 3}, {2, 3, 4}, and {3, 4, 5}.

EXAMPLE 3.4.1

∙ {1, 2, 3} ∈ {{1, 2, 3}, {1, 4, 9}}

∙ 1 ∉ {{1, 2, 3}, {1, 4, 9}}

∙ {1, 2, 3} * {{1, 2, 3}, {1, 4, 9}}

∙ {{1, 2, 3}} ⊆ {{1, 2, 3}, {1, 4, 9}}.
EXAMPLE 3.4.2

∙ ∅ ⊆ {∅, {∅}} by Theorem 3.3.4.
∙ {∅} ⊆ {∅, {∅}} because ∅ ∈ {∅, {∅}}.
∙ {{∅}} ⊆ {∅, {∅}} because {∅} ∈ {∅, {∅}}.
Families of sets can have infinitely many elements. For example, let

ℱ = {[n, n + 1] : n ∈ Z}. (3.3)
In roster notation,

ℱ = {… , [−2,−1] , [−1, 0] , [0, 1] , [1, 2] ,…}.

Notice that in this case, abstraction is more convenient. For each integer n, the closed
interval [n, n + 1] is in ℱ . The set Z plays the role of an index set, a set whose only
purpose is to enumerate the elements of the family. Each element of an index set is
called an index. If we let I = Z and Ai = [i, i + 1], the family can be written as

ℱ = {Ai : i ∈ I}.
To write the family ℰ (3.2) using an index set, let I = {0, 1, 2} and define

A0 = {1, 2, 3},
A1 = {2, 3, 4},
A2 = {3, 4, 5}.

Then, the family illustrated in Figure 3.8 is
ℰ = {Ai : i ∈ I} = {A1, A2, A3}.
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1 2

3
2

3
4

3
4 5

A

A

A

0

1

2

ℰ

Figure 3.8 The family of sets ℰ = {Ai : i ∈ I} with I = {1, 2, 3}.

There is no reason why I must be {0, 1, 2}. Any three-element set will do. The order
in which the sets are defined is also irrelevant. For instance, we could have defined
I = {w, �, 99} and

Aw = {3, 4, 5},
A� = {2, 3, 4},
A99 = {1, 2, 3}.

The goal is to have each set in the family referenced or indexed by at least one element
of the set. We will still have ℰ = {Ai : i ∈ I} with a similar diagram (Figure 3.9).

EXAMPLE 3.4.3

Write ℱ (3.3) using N as the index set instead of Z. Use the even natural num-
bers to index the intervals with a nonnegative integer left-hand endpoint. The
odd natural numbers will index the intervals with a negative integer left-hand
endpoint. To do this, define the sets Bi as follows:

1 2

3
2

3
4

3
4 5

A

A

A

99

π

w

ℰ

Figure 3.9 The family of sets ℰ = {Ai : i ∈ I} with I = {w, �, 99}.
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⋮

B5 = [−3,−2]
B3 = [−2,−1]
B1 = [−1, 0]
B0 = [0, 1]
B2 = [1, 2]
B4 = [2, 3]

⋮

Use 2n + 1 to represent the odd natural numbers and 2n to represent the even
natural numbers (n ∈ N). Then,

⋮

B2(2)+1 = [−2 − 1,−2]
B2(1)+1 = [−1 − 1,−1]
B2(0)+1 = [−0 − 1,−0]

and
B2(0) = [0, 0 + 1]
B2(1) = [1, 1 + 1]
B2(2) = [2, 2 + 1]

⋮

Therefore, define for all natural numbers n,
B2n+1 = [−n − 1,−n]

and
B2n = [n, n + 1] .

We have indexed the elements of ℱ as
B0 = [0, 1]
B1 = [−1, 0]
B2 = [1, 2]
B3 = [−2,−1]
B4 = [2, 3]
B5 = [−3,−2]

⋮

So under this definition, ℱ = {Bi : i ∈ N}.
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Power Set

There is a natural way to form a family of sets. Take a set A. The collection of all
subsets of A is called the power set of A. It is represented by P(A).

DEFINITION 3.4.4

For any set A,
P(A) = {B : B ⊆ A}.

Notice that ∅ ∈ P(A) by Theorem 3.3.4.
EXAMPLE 3.4.5

∙ P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

∙ P({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}

∙ P(N) = {∅, {0}, {1},… , {0, 1}, {0, 2},…}.
Consider A = {2, 6} and B = {2, 6, 10}, so A ⊆ B. Examining the power sets of each,
we find that

P(A) = {∅, {2}, {6}, {2, 6}}
and

P(B) = {∅, {2}, {6}, {10}, {2, 6}, {2, 10}, {6, 10}, {2, 6, 10}}.
Hence, P(A) ⊆ P(B). This result is generalized in the next lemma.

LEMMA 3.4.6

A ⊆ B if and only if P(A) ⊆ P(B).
PROOF

∙ Let A ⊆ B. Assume X ∈ P(A). Then, X ⊆ A, which gives X ⊆ B by
Theorem 3.3.6. Hence, X ∈ P(B).

∙ Assume P(A) ⊆ P(B). Let x ∈ A. In other words, {x} ⊆ A, but this means that
{x} ∈ P(A). Hence, {x} ∈ P(B) by hypothesis, so x ∈ B.

The definition of set equality and Lemma 3.4.6 are used to prove the next theorem. Its
proof is left to Exercise 9.

THEOREM 3.4.7

A = B if and only if P(A) = P(B).

Union and Intersection

We now generalize the set operations. Define the union of a family of sets to be the set
of all elements that belong to some member of the family. This union is denoted by the
same notation as in Definition 3.2.1 and can be defined using the abstraction method.
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DEFINITION 3.4.8

Let ℱ be a family of sets. Define
⋃

ℱ = {x : ∃A(A ∈ ℱ ∧ x ∈ A)}.

If the family is indexed so that ℱ = {Ai : i ∈ I}, define
⋃

i∈I
Ai = {x : ∃i(i ∈ I ∧ x ∈ Ai)}.

Observe that⋃ℱ =
⋃

i∈I Ai [Exercise 16(a)].
We generalize the notion of intersection similarly. The intersection of a family of

sets is the set of all elements that belong to each member of the family.
DEFINITION 3.4.9

Let ℱ be a family of sets.
⋂

ℱ = {x : ∀A(A ∈ ℱ → x ∈ A)}.

If the family is indexed so that ℱ = {Ai : i ∈ I}, define
⋂

i∈I
Ai = {x : ∀i(i ∈ I → x ∈ Ai)}.

Observe that⋂ℱ =
⋂

i∈I Ai [Exercise 16(b)].
Furthermore, notice that both definitions are indeed generalizations of the operations

of Section 3.2 because as noted in Exercise 17,
⋃

{A,B} = A ∪ B,

and
⋂

{A,B} = A ∩ B.

EXAMPLE 3.4.10

Define ℰ = {[n, n + 1] : n ∈ Z}.
∙ When all of these intervals are combined, the result is the real line. This
means that

⋃

ℰ = R.

∙ There is not one element that is common to all of the intervals. Hence,
⋂

ℰ = ∅.

The next example illustrates how to write the union or intersection of a family of sets
as a roster.
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EXAMPLE 3.4.11

Let ℱ = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}.
∙ Since 1 is in the first set of ℱ , 1 ∈ ⋃

ℱ . The others can be explained
similarly, so

⋃

ℱ = {1, 2, 3, 4, 5}.

Notice that mechanically this amounts to removing the braces around the
sets of the family and setting the union to the resulting set:

{1, 2, 3, 2, 3, 4, 3, 4, 5}

ℱ

ℱ{1, 2, 3, 4, 5}

{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}

Remove braces

⋃

∙ The generalized intersection is simply the overlap of all of the sets. Hence,
3 is the only element of⋂ℱ . That is,

⋂

ℱ = {3},

and this is illustrated by the following diagram:

{{1, 2,  3 }, {2,  3  , 4}, { 3  , 4, 5}} ℱ

{3} ℱ⋃

EXAMPLE 3.4.12

Since a family of sets can be empty, we must be able to take the union and inter-
section of the empty set. To prove that ⋃∅ = ∅, take x ∈ ⋃

∅. This means
that there exists A ∈ ∅ such that x ∈ A, but this is impossible. We leave the fact
that⋂∅ is equal to the universe to Exercise 24.
The next theorem generalizes the Distributive Laws. Exercise 2.4.10 plays an im-

portant role in its proof. It allows us to move the quantifier.
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THEOREM 3.4.13

Let Ai (i ∈ I) and B be sets.
∙ B ∪

⋂

i∈I
Ai =

⋂

i∈I
(B ∪ Ai)

∙ B ∩
⋃

i∈I
Ai =

⋃

i∈I
(B ∩ Ai).

PROOF
We leave the second part to Exercise 19. The first part is demonstrated by the
following biconditional proof:

x ∈ B ∪
⋂

i∈I
Ai ⇔ x ∈ B ∨ x ∈

⋂

i∈I
Ai

⇔ x ∈ B ∨ ∀i(i ∈ I → x ∈ Ai)
⇔ x ∈ B ∨ ∀i(i ∉ I ∨ x ∈ Ai)
⇔ ∀i(x ∈ B ∨ i ∉ I ∨ x ∈ Ai)
⇔ ∀i(i ∉ I ∨ x ∈ B ∨ x ∈ Ai)
⇔ ∀i(i ∈ I → x ∈ B ∨ x ∈ Ai)
⇔ ∀i(i ∈ I → x ∈ B ∪ Ai)

⇔ x ∈
⋂

i∈I
(B ∪ Ai).

To understand the next result, consider the following example. Choose the universe
to be {1, 2, 3, 4, 5} and perform some set operations on the family

{{1, 2, 3}, {2, 3, 4}, {2, 3, 5}}.

First,
⋂

{{1, 2, 3}, {2, 3, 4}, {2, 3, 5}} = {2, 3} = {1, 4, 5},
and second,

⋃

{{1, 2, 3}, {2, 3, 4}, {2, 3, 5}} =
⋃

{{4, 5}, {1, 5}, {1, 4}} = {1, 4, 5}.

This leads us to the next generalization of De Morgan’s laws. Its proof is left to Exer-
cise 23.

THEOREM 3.4.14

Let {Ai : i ∈ I} be a family of sets.
∙
⋂

i∈I
Ai =

⋃

i∈I
Ai

∙
⋃

i∈I
Ai =

⋂

i∈I
Ai.
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Disjoint and Pairwise Disjoint

What it means for two sets to be disjoint was defined in Section 3.2 (Definition 3.2.3).
The next definition generalizes that notion to families of sets. Because a family can
have more than two elements, it is appropriate to expand the concept of disjointness.

DEFINITION 3.4.15

Let ℱ be a family of sets.
∙ ℱ is disjoint when⋂ℱ = ∅.
∙ ℱ is pairwise disjoint when for all A,B ∈ ℱ , if A ≠ B, then A∩B = ∅.

Observe that {{1, 2}, {3, 4}, {5, 6}} is both disjoint and pairwise disjoint because its
elements have no common members.

EXAMPLE 3.4.16

Let A be a set. We see that
⋃

P(A) = {x : ∃B[B ∈ P(A) ∧ x ∈ B]} = A.

Although P(A) is not a pairwise disjoint family of sets, it is a disjoint because
∅ ∈ P(A).
If the family is indexed, we can use another test to determine if it is pairwise disjoint.

Let ℱ = {Ai : i ∈ I} be a family of sets. If for all i, j ∈ I ,
i ≠ j implies Ai ∩ Aj = ∅, (3.4)

then ℱ is pairwise disjoint. To prove this, let ℱ be a family that satisfies (3.4). Take
Ai, Aj ∈ ℱ for some i, j ∈ I and assume Ai ≠ Aj . Therefore, i ≠ j, for otherwise
they would be the equal. Hence, Ai ∩ Aj = ∅ by Condition 3.4.

The next result illustrates the relationship between these two terms. One must be
careful, though. The converse is false (Exercise 14).

THEOREM 3.4.17

Let ℱ be a family of sets with at least two elements. If ℱ is pairwise disjoint,
then ℱ is disjoint.

PROOF
Assumeℱ is pairwise disjoint. Sinceℱ contains at least two sets, let A,B ∈ ℱ
such that A ≠ B. Then, using Exercise 27,⋂ℱ ⊆ A ∩ B = ∅.

Exercises

1. Let I = {1, 2, 3, 4, 5}, A1 = {1, 2}, A2 = {3, 4}, A3 = {1, 4}, A4 = {3, 4}, and
A5 = {1, 3}. Write the given families of sets as a rosters.
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(a) {Ai : i ∈ I}
(b) {Ai : i ∈ {2, 4}}
(c) {Ai : i = 1}
(d) {Ai : i = 1, 2}
(e) {Ai : i ∈ ∅}
(f) {Ai : i ∈ A5}

2. Answer true or false.
(a) 1 ∈ {{1}, {2}, {1, 2}}
(b) {1} ∈ {{1}, {2}, {1, 2}}
(c) {1} ⊆ {{1}, {2}, {1, 2}}
(d) {1, 2} ∈ {{{1, 2}, {3, 4}}, {1, 2}}
(e) {1, 2} ⊆ {{{1, 2}, {3, 4}}, {1, 2}}
(f) {3, 4} ∈ {{{1, 2}, {3, 4}}, {1, 2}}
(g) {3, 4} ⊆ {{{1, 2}, {3, 4}}, {1, 2}}
(h) ∅ ∈ {{{1, 2}, {3, 4}}, {1, 2}}
(i) ∅ ⊆ {{{1, 2}, {3, 4}}, {1, 2}}
(j) {∅} ∈ {∅, {∅, {∅}}}
(k) {∅} ⊆ {∅, {∅, {∅}}}
(l) ∅ ∈ {∅, {∅, {∅}}}
(m) ∅ ⊆ {∅, {∅, {∅}}}
(n) {∅} ⊆ ∅
(o) {∅} ⊆ {∅, {∅}}
(p) {∅} ⊆ {{∅, {∅}}}
(q) {{∅}} ⊆ {∅, {∅}}
(r) {1} ∈ P(Z)
(s) {1} ⊆ P(Z)
(t) ∅ ∈ P(∅)
(u) {∅} ∈ P(∅)
(v) {∅} ⊆ P(∅)

3. Find sets such thatI ∩ J = ∅ but {Ai : i ∈ I} and {Aj : j ∈ J} are not disjoint.
4. Let {Ai : i ∈ K} be a family of sets and let I and J be subsets of K . Define
ℰ = {Ai : i ∈ I} and ℱ = {Aj : j ∈ J} and prove the following.

(a) If I ⊆ J , then ℰ ⊆ ℱ .
(b) ℰ ∪ℱ = {Ai : i ∈ I ∪ J}
(c) {Ai : i ∈ I ∩ J} ⊆ ℰ ∩ℱ

5. Using the same notation as in the previous problem, find a family {Ai : i ∈ K} andsubsets I and J of K such that:
(a) ℰ ∩ℱ * {Ai : i ∈ I ∩ J}
(b) {Ai : i ∈ I ⧵ J} * ℰ ⧵ℱ

6. Show {Ai : i ∈ I} = ∅ if and only if I = ∅.
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7. Let A be a finite set. How many elements are in P(A) if A has n elements? Explain.
8. Find the given power sets.

(a) P({1, 2})
(b) P(P({1, 2}))
(c) P(∅)
(d) P(P(∅))
(e) P({{∅}})
(f) P({∅, {∅}, {∅, {∅}}})

9. Prove Theorem 3.4.7.
10. For each of the given equalities, prove or show false. If one is false, prove any true
inclusion.

(a) P(A ∪ B) = P(A) ∪ P(B)
(b) P(A ∩ B) = P(A) ∩ P(B)
(c) P(A ⧵ B) = P(A) ⧵ P(B)
(d) P(A × B) = P(A) × P(B)

11. Prove P(A) ⊆ P(B) implies A ⊆ B by using the fact that A ∈ P(A).
12. Write the following sets in roster form.

(a) ⋃

{{1, 2}, {1, 2}, {1, 3}, {1, 4}}
(b) ⋂

{{1, 2}, {1, 2}, {1, 3}, {1, 4}}
(c) ⋂

P(∅)
(d) ⋃

P(∅)
(e) ⋃⋃

{{{1}}, {{1, 2}}, {{1, 3}}, {{1, 4}}}
(f) ⋃⋂

{{{1}}, {{1, 2}}, {{1, 3}}, {{1, 4}}}
(g) ⋂⋃

{{{1}}, {{1, 2}}, {{1, 3}}, {{1, 4}}}
(h) ⋂⋂

{{{1}}, {{1, 2}}, {{1, 3}}, {{1, 4}}}
(i) ⋃⋃

∅
(j) ⋂⋃

∅

13. Draw Venn diagrams for a disjoint family of sets that is not pairwise disjoint and
for a pairwise disjoint family of sets.
14. Show by example that a disjoint family of sets might not be pairwise disjoint.
15. Given a family of sets {Ai : i ∈ I}, find a family ℬ = {Bi : i ∈ I} such that
{Ai × Bi : i ∈ I} is pairwise disjoint.
16. Let ℱ = {Ai : i ∈ I} be a family of sets. Prove the given equations.

(a) ⋃

ℱ =
⋃

i∈I Ai
(b) ⋂

ℱ =
⋂

i∈I Ai
17. Prove for any sets A and B,⋃{A,B} = A ∪ B and⋂{A,B} = A ∩ B.
18. Let C = {(0, n) : n ∈ Z+}. Prove that⋃C = (0,∞) and⋂C = (0, 1).
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19. Prove the second part of Theorem 3.4.13.
20. Prove Theorem 3.4.17 indirectly.
21. Is Theorem 3.4.17 still true if the family of sets ℱ has at most one element? Ex-
plain.
22. Let {Ai : i ∈ I} be a family of sets and prove the following.

(a) If B ⊆ Ai for some i ∈ I , then B ⊆
⋃

i∈I Ai.
(b) If Ai ⊆ B for all i ∈ I ,⋂i∈I Ai ⊆ B.
(c) If B ⊆

⋂

i∈I Ai, then B ⊆ Ai for all i ∈ I .
23. Prove Theorem 3.4.14.
24. Show⋂

∅ = U where U is a universe.
25. Let ℱ be a family of sets such that ∅ ∈ ℱ . Prove⋂ℱ = ∅.
26. Find families of sets ℰ and ℱ so that ⋃ℰ =

⋃

ℱ but ℰ ≠ ℱ . Can this be
repeated by replacing union with intersection?
27. Let ℱ be a family of sets, and let A ∈ ℱ . Prove⋂ℱ ⊆ A ⊆

⋃

ℱ .
28. Let ℰ and ℱ be families of sets. Show the following.

(a) ⋃

{ℱ } = ℱ
(b) ⋂

{ℱ } = ℱ
(c) If ℰ ⊆ ℱ , then⋃ℰ ⊆

⋃

ℱ .
(d) If ℰ ⊆ ℱ , then⋂ℱ ⊆

⋂

ℰ .
(e) ⋃

(ℰ ∪ℱ ) =
⋃

ℰ ∪
⋃

ℱ
(f) ⋂

(ℰ ∪ℱ ) =
⋂

ℰ ∩
⋂

ℱ

29. Find families of sets ℰ and ℱ that make the following false.
(a) ⋂

(ℰ ∩ℱ ) =
⋂

ℰ ∩
⋂

ℱ
(b) ⋃

(ℰ ∩ℱ ) =
⋃

ℰ ∩
⋃

ℱ

30. Letℱ be a family of sets. For each of the given equalities, prove true or show that
it is false by finding a counter-example.

(a) ⋃

P(ℱ ) = ℱ
(b) ⋂

P(ℱ ) = ℱ
(c) P(

⋃

ℱ ) = ℱ
(d) P(

⋂

ℱ ) = ℱ

31. Prove these alternate forms of De Morgan’s laws.
(a) A ⧵

⋃

i∈I Bi =
⋂

i∈I A ⧵ Bi
(b) A ⧵

⋂

i∈I Bi =
⋃

i∈I A ⧵ Bi
32. Assume that the universe U contains only sets such that for all A ∈ U , A ⊆ U and
P(A) ∈ U . Prove the following equalities.

(a) ⋃

U = U
(b) ⋂

U = ∅
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33. Let In = [n, n + 1] and Jn = [n, n + 1], n ∈ Z. Define
ℱ = {In × Jm : n, m ∈ Z}.

Show⋃

ℱ = R2 and⋂ℱ = ∅. Is ℱ pairwise disjoint?





CHAPTER 4

RELATIONS AND FUNCTIONS

4.1 RELATIONS

A relation is an association between objects. A book on a table is an example of the
relation of one object being on another. It is especially common to speak of relations
among people. For example, one person could be the niece of another. In mathematics,
there are many relations such as equals and less-than that describe associations between
numbers. To formalize this idea, we make the next definition.

DEFINITION 4.1.1

A set R is an (n-ary) relation if there exist sets A0, A1,… , An−1 such that
R ⊆ A0 × A1 × · · · × An−1.

In particular, R is a unary relation if n = 1 and a binary relation if n = 2. If
R ⊆ A × A for some set A, then R is a relation on A and we write (A,R).

The relation on can be represented as a subset of the Cartesian product of the set of all
books and the set of all tables. We could then write (dictionary, desk) to mean that the

A First Course in Mathematical Logic and Set Theory, First Edition. Michael L. O’Leary.
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dictionary is on the desk. Similarly, the set {(2, 4), (7, 3), (0, 0)} is a relation because
it is a subset of Z × Z. The ordered pair (2, 4) means that 2 is related to 4. Likewise,
R × Q is a relation where every real number is related to every rational number, and
according to Definition 4.1.1, the empty set is also a relation because ∅ = ∅ ×∅.

EXAMPLE 4.1.2

For any set A, define
IA = {(a, a) : a ∈ A}.

Call this set the identity on A. In particular, the identity on R is
IR = {(x, x) : x ∈ R},

and the identity on Z is
IZ = {(x, x) : x ∈ Z}.

Notice that ∅ is the identity on ∅.

EXAMPLE 4.1.3

The less-than relation on Z is defined as
L = {(a, b) : a, b ∈ Z ∧ a < b}.

Another approach is to use membership in the set of positive integers as our con-
dition. That is,

L = {(a, b) : a, b ∈ Z ∧ b − a ∈ Z+}.
Hence, (4, 7) ∈ L because 7 − 4 ∈ Z+. See Exercise 1 for another definition of
L.
When a relation R ⊆ A × B is defined, all elements in A or B might not be used.

For this reason, it is important to identify the sets that comprise all possible values for
the two coordinates of the relation.

DEFINITION 4.1.4

Let R ⊆ A × B. The domain of R is the set
dom(R) = {x ∈ A : ∃y(y ∈ B ∧ (x, y) ∈ R)},

and the range of R is the set
ran(R) = {y ∈ B : ∃x(x ∈ A ∧ (x, y) ∈ R)}.

EXAMPLE 4.1.5

If R = {(1, 3), (2, 4), (2, 5)}, then dom(R) = {1, 2} and ran(R) = {3, 4, 5}. We
represent this in Figure 4.1 where A and B are sets so that {1, 2} ⊆ A and
{3, 4, 5} ⊆ B. The ordered pair (1, 3) is denoted by the arrow pointing from
1 to 3. Also, both dom(R) and ran(R) are shaded.
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A B1

2 5

4

3

R

Figure 4.1 R = {(1, 3), (2, 4), (2, 5)}.

EXAMPLE 4.1.6

Let S = {(x, y) : |x| = y ∧ x, y ∈ R}. Notice that both (2, 2) and (−2, 2) are
elements of S. Furthermore, dom(S) = R and ran(S) = [0,∞).

The domain and range of a relation can be the same set as in the next two examples.
EXAMPLE 4.1.7

If R = {(0, 1), (0, 2), (1, 0), (2, 0)}, then R is a relation on the set {0, 1, 2} with
dom(R) = ran(R) = {0, 1, 2}.

EXAMPLE 4.1.8

For the relation
S =

{

(x, y) ∈ R2 : √x2 + y2 ≥ 1
}

,

both the domain and range equal R. First, note that it is clear by the definition
of S that both dom(S) and ran(S) are subsets of R. For the other inclusion, take
x ∈ R. Since (x, 1) ∈ S, x ∈ dom(S), and since (1, y) ∈ S, y ∈ ran(S).

Composition

Given the relations R and S, let us define a new relation. Suppose that (a, b) ∈ S and
(b, c) ∈ R. Therefore, a is related to c through b. The new relation will contain the
ordered pair (a, c) to represent this relationship.

DEFINITION 4.1.9

Let R ⊆ A × B and S ⊆ B × C . The composition of S and R is the subset of
A × C defined as

S ◦ R = {(x, z) : ∃y(y ∈ B ∧ (x, y) ∈ R ∧ (y, z) ∈ S)}.
As illustrated in Figure 4.2, the reason that (a, c) ∈ R ◦ S is because (a, b) ∈ S and
(b, c) ∈ R. That is, a is related to c via R ◦S because a is related to b via S and then b
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A C

a

b

c

B

R ◦ S

R
S

Figure 4.2 A composition of relations.

is related to c via R. The composition can be viewed as the direct path from a to c that
does not require the intermediary b.

EXAMPLE 4.1.10

To clarify the definition, let
R = {(2, 4), (1, 3), (2, 5)}

and
S = {(0, 1), (1, 0), (0, 2), (2, 0)}.

We have that R ◦ S = {(0, 3), (0, 4), (0, 5)}. Notice that (0, 3) ∈ R ◦ S because
(0, 1) ∈ S and (1, 3) ∈ R. However, S ◦ R is empty since ran(R) and dom(S)
are disjoint.

EXAMPLE 4.1.11

Define
R = {(x, y) ∈ R2 : x2 + y2 = 1}

and
S = {(x, y) ∈ R2 : y = x + 1}.

Notice that R is the unit circle and S is the line with slope of 1 and y-intercept
of (0, 1). Let us find R ◦ S.

R ◦ S = {(x, z) ∈ R2 : ∃y(y ∈ R ∧ (x, y) ∈ S ∧ (y, z) ∈ R)}
= {(x, z) ∈ R2 : ∃y(y ∈ R ∧ y = x + 1 ∧ y2 + z2 = 1)}
= {(x, z) ∈ R2 : (x + 1)2 + z2 = 1}.
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Therefore, R ◦ S is the circle with center (−1, 0) and radius 1.
Example 4.1.10 shows that it is possible that S ◦ R ≠ R ◦ S. However, we can

change the order of the composition.
THEOREM 4.1.12

If R ⊆ A × B, S ⊆ B × C , and T ⊆ C ×D, then T ◦ (S ◦ R) = (T ◦ S) ◦ R.
PROOF

Assume that R ⊆ A × B, S ⊆ B × C , and T ⊆ C ×D. Then,
(a, d) ∈ T ◦ (S ◦ R)

⇔ ∃c(c ∈ C ∧ (a, c) ∈ S ◦ R ∧ (c, d) ∈ T )
⇔ ∃c(c ∈ C ∧ ∃b(b ∈ B ∧ (a, b) ∈ R ∧ (b, c) ∈ S) ∧ (c, d) ∈ T )
⇔ ∃c∃b(c ∈ C ∧ b ∈ B ∧ (a, b) ∈ R ∧ (b, c) ∈ S ∧ (c, d) ∈ T )
⇔ ∃b∃c(b ∈ B ∧ (a, b) ∈ R ∧ c ∈ C ∧ (b, c) ∈ S ∧ (c, d) ∈ T )
⇔ ∃b(b ∈ B ∧ (a, b) ∈ R ∧ ∃c[c ∈ C ∧ (b, c) ∈ S ∧ (c, d) ∈ T ])
⇔ ∃b(b ∈ B ∧ (a, b) ∈ R ∧ (b, d) ∈ T ◦ S)
⇔ (a, d) ∈ (T ◦ S) ◦ R.

Inverses

Let R ⊆ A × B. We know that R ◦ IA = R and IB ◦ R = R [Exercise 10(a)]. If we
want IA = IB , we need A = B so that R is a relation on A. Then,

R ◦ IA = IA ◦ R = R.

For example, if we again define R = {(2, 4), (1, 3), (2, 5)} and view it as a relation on
Z, then R composed on either side by IZ yields R. To illustrate, consider the ordered
pair (1, 3). It is an element of R ◦ IZ because

(1, 1) ∈ IZ ∧ (1, 3) ∈ R,

and it is also an element of IZ ◦ R because
(1, 3) ∈ R ∧ (3, 3) ∈ IZ.

Notice that not every identity relation will have this property. Using the same definition
of R as above,

R ◦ I{1,2} = R,

but
I{1,2} ◦ R = ∅.

Now let us change the problem. Given a relation R on A, can we find a relation S
on A such that R ◦ S = S ◦ R = IA? The next definition is used to try to answer this
question.
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DEFINITION 4.1.13

Let R be a binary relation. The inverse of R is the set
R−1 = {(y, x) : (x, y) ∈ R}.

For a relation S, we say that R and S are inverse relations if R−1 = S.

EXAMPLE 4.1.14

Let L be the less-than relation on R (Example 4.1.3). Then,
L−1 = {(y, x) ∈ R2 : (x, y) ∈ L}

= {(y, x) ∈ R2 : x < y}
= {(y, x) ∈ R2 : y > x}.

This shows that less-than and greater-than are inverse relations.
We now check whether R ◦R−1 = R−1 ◦R = IA for any relation R on A. Consider

R = {(2, 1), (4, 3)}, which is a relation on {1, 2, 3, 4}. Then,
R−1 = {(1, 2), (3, 4)},

and we see that composing does not yield the identity on {1, 2, 3, 4} because
R ◦ R−1 = {(1, 1), (3, 3)} = I{1,3}

and
R−1 ◦ R = {(2, 2), (4, 4)} = I{2,4}.

The situation is worse when we define S = {(2, 1), (2, 3), (4, 3)}. In this case, we have
that

S−1 = {(1, 2), (3, 2), (3, 4)}

but
S ◦ S−1 = {(1, 1), (1, 3), (3, 1), (3, 3)}

and
S−1 ◦ S = {(2, 2), (2, 4), (4, 4)}.

Neither of these compositions leads to an identity, but at least we have that
{(1, 1), (3, 3)} ⊆ S ◦ S−1

and
{(2, 2), (4, 4)} ⊆ S−1 ◦ S.

This can be generalized.
THEOREM 4.1.15

Iran(R) ⊆ R ◦ R−1 and Idom(R) ⊆ R
−1 ◦ R for any binary relation R.
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PROOF
The first inclusion is proved in Exercise 12. To see the second inclusion, let
x ∈ dom(R). By definition, there exists y ∈ ran(R) so that (x, y) ∈ R. Hence,
(y, x) ∈ R−1, which implies that (x, x) ∈ R−1 ◦ R.

Exercises

1. Let L ⊆ Z × Z be the less-than relation as defined in Example 4.1.3. Prove that
L = {(a, b) ∈ Z × Z : a − b ∈ Z−}.

2. Find the domain and range of the given relations.
(a) {(0, 1), (2, 3), (4, 5), (6, 7)}
(b) {((a, b), 1), ((a, c), 2), ((a, d), 3)}
(c) R × Z
(d) ∅ ×∅
(e) Q ×∅
(f) {(x, y) : x, y ∈ [0, 1] ∧ x < y}
(g) {(x, y) ∈ R2 : y = 3}
(h) {(x, y) ∈ R2 : y = |x|}
(i) {(x, y) ∈ R2 : x2 + y2 = 4}
(j) {(x, y) ∈ R2 : y ≤ √

x ∧ x ≥ 0}
(k) {(f, g) : ∃a ∈ R(f (x) = ex ∧ g(x) = ax)}
(l) {((a, b), a + b) : a, b ∈ Z}

3. Write R ◦ S as a roster.
(a) R = {(1, 0), (2, 3), (4, 6)}, S = {(1, 2), (2, 3), (3, 4)}
(b) R = {(1, 3), (2, 5), (3, 1)}, S = {(1, 3), (3, 1), (5, 2)}
(c) R = {(1, 2), (3, 4), (5, 6)}, S = {(1, 2), (3, 4), (5, 6)}
(d) R = {(1, 2), (3, 4), (5, 6)}, S = {(2, 1), (3, 5), (5, 7)}

4. Write R ◦ S using abstraction.
(a) R = {(x, y) ∈ R2 : x2 + y2 = 1}

S = R2
(b) R = {(x, y) ∈ R2 : x2 + y2 = 1}

S = Z × Z
(c) R = {(x, y) ∈ R2 : x2 + y2 = 1}

S = {(x, y) ∈ R2 : (x − 2)2 + y2 = 1}
(d) R = {(x, y) ∈ R2 : x2 + y2 = 1}

S = {(x, y) ∈ R2 : y = 2x − 1}
5. Write the inverse of each relation. Use the abstraction method where appropriate.

(a) ∅
(b) IZ
(c) {(1, 0), (2, 3), (4, 6)}
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(d) {(1, 0), (1, 1), (2, 1)}
(e) Z × R
(f) {(x, sin x) : x ∈ R}
(g) {(x, y) ∈ R2 : x + y = 1}
(h) {(x, y) ∈ R2 : x2 + y2 = 1}

6. Let R ⊆ A × B and S ⊆ B × C . Show the following.
(a) R−1 ◦ S−1 ⊆ C × A.
(b) dom(R) = ran(R−1).
(c) ran(R) = dom(R−1).

7. Prove that if R is a binary relation, (R−1)−1 = R.
8. Prove that (S ◦ R)−1 = R−1 ◦ S−1 if R ⊆ A × B and S ⊆ B × C .
9. Let R,S ⊆ A × B. Prove the following.

(a) If R ⊆ S, then R−1 ⊆ S−1.
(b) (R ∪ S)−1 = R−1 ∪ S−1.
(c) (R ∩ S)−1 = R−1 ∩ S−1.

10. Let R ⊆ A × B.
(a) Prove R ◦ IA = R and IB ◦ R = R.
(b) Show that if there exists a set C such that A and B are subsets of C , then

R ◦ IC = IC ◦ R = R.

11. Let R ⊆ A × B and S ⊆ B × C . Show that S ◦ R = ∅ if and only if dom(S) and
ran(R) are disjoint.
12. For any relation R, prove Iran(R) ⊆ R ◦ R−1.
13. Let R ⊆ A × B. Prove.

(a) ⋃

b∈B{x ∈ A : (x, b) ∈ R} = dom(R).
(b) ⋃

a∈A{y ∈ B : (a, y) ∈ R} = ran(R).

4.2 EQUIVALENCE RELATIONS

In practice we usually do not write relations as sets of ordered pairs. We instead write
propositions like 4 = 4 or 3 < 9. To copy this, we will introduce an alternate notation.

DEFINITION 4.2.1

Let R be a relation on A. For all a, b ∈ A,
aR b if and only if (a, b) ∈ R,

and
a R̸ b if and only if (a, b) ∉ R.

For example, the less-than relation L (Example 4.1.3) is usually denoted by <, and we
write 2 < 3 instead of (2, 3) ∈ L or (2, 3) ∈ <.
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EXAMPLE 4.2.2

Define the relation R on Z by

R = {(a, b) ∈ Z × Z : ∃c ∈ Z(b = ac ∧ a ≠ 0)}.

Therefore, for all a, b ∈ Z, aR b if and only if a divides b. Therefore, 4R 8 but
8 R̸ 4.

Relations can have different properties depending on their definitions. Here are three
important examples using relations on A = {1, 2, 3}.

∙ {(1, 1), (2, 2), (3, 3)} has the property that every element of A is related to itself.

∙ {(1, 2), (2, 1), (2, 3), (3, 2)} has the property that if a is related to b, then b is re-
lated to a.

∙ {(1, 2), (2, 3), (1, 3)} has the property that if a is related to b and b is related to c,
then a is related to c.

These examples lead to the following definitions.
DEFINITION 4.2.3

Let R be a relation on A.
∙ R is reflexive if aRa for all a ∈ A.

∙ R is symmetric when for all a, b ∈ A, if aR b, then bRa.

∙ R is transitivemeans that for all a, b, c ∈ A, if aR b and bR c, then aR c.

Notice that the relation in Example 4.2.2 is not reflexive because 0 does not divide 0
and is not symmetric because 4 divides 8 but 8 does not divide 4, but it is transitive
because if a divides b and b divides c, then a divides c.

When a relation is reflexive, symmetric, and transitive, it behaves very much like an
identity relation (Example 4.1.2). Such relations play an important role in mathematics,
so we name them.

DEFINITION 4.2.4

A relation R on A is an equivalence relation if R is reflexive, symmetric, and
transitive.

Observe that the relation in Example 4.2.2 is not an equivalence relation. However, any
identity relation is an equivalence relation. We see this assumption at work in the next
example.
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EXAMPLE 4.2.5

Let R be a relation on Z × (Z ⧵ {0}) so that for all a, c ∈ Z and b, d ∈ Z ⧵ {0},
(a, b)R (c, d) if and only if ad = bc.

To see that this is an equivalence relation, let (a, b), (c, d), and (e, f ) be elements
of Z × (Z ⧵ {0}).

∙ (a, b)R (a, b) since ab = ab.
∙ Assume (a, b)R (c, d). Then, ad = bc. This implies that cb = da, so
(c, d)R (a, b).

∙ Let (a, b)R (c, d) and (c, d)R (e, f ). This gives ad = bc and cf = de.
Therefore, (a, b)R (e, f ) because

af =
bcf
d

= be.

EXAMPLE 4.2.6

Take m ∈ Z+ and let a, b, and c be integers. Define a to be congruent to b
modulo m and write

a ≡ b (mod m) if and only if m ∣ a − b.
That is,

a ≡ b (mod m) if and only if a = b + mk for some k ∈ Z.
For example, we have that 7 ≡ 1 (mod 3), 1 ≡ 13 (mod 3), and 27 ≡ 0 (mod 3),
but 2 ≢ 9 (mod 3) and 25 ≢ 0 (mod 3). Congruence modulo m defines the
relation

Rm = {(a, b) : a ≡ b (mod m)}.
Observe that

Rm = {(a, b) : m ∣ a − b} = {(a, b) : ∃k(k ∈ Z ∧ a = b + mk)}.

Prove that Rm is an equivalence relation.
∙ (a, a) ∈ Rm because a ≡ a (mod m).
∙ Assume (a, b) ∈ Rm. This implies that m ∣ a − b. By Exercise 2.4.18,
m ∣ b − a. Hence, (b, a) ∈ Rm.

∙ Let (a, b), (b, c) ∈ Rm. Then a = b+mk and b = c +ml for some k, l ∈ Z.
Substitution yields

a = c + ml + mk = c + m(l + k).

Since the sum of two integers is an integer, (a, c) ∈ Rm.
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Equivalence Classes

Let R be a relation on {1, 2, 3, 4} such that
R = {(1, 2), (1, 3), (2, 4)}. (4.1)

Observe that 1 is related to 2 and 3, 2 is related to 4, and 3 and 4 are not related to any
number. Combining the elements that are related to a particular element results in a set
named by the next definition.

DEFINITION 4.2.7

Let R be a relation on A with a ∈ A. The class of a with respect to R is the set
[a]R = {x ∈ A : aRx}.

If R is an equivalence relation, [a]R is called an equivalence class. We often
denote [a]R by [a] if the relation is clear from context.

Using R as defined in (4.1),
[1]R = {2, 3}, [2]R = {4}, and [3]R = [4]R = ∅.

If R had been an equivalence relation on a set A, then [a]R would be nonempty for all
a ∈ A because a would be an element of [a]R (Exercise 17).

EXAMPLE 4.2.8

Let R be the equivalence relation from Example 4.2.5. We prove that
[(1, 3)] = {(n, 3n) : n ∈ Z ⧵ {0}}.

To see this, take (a, b) ∈ [(1, 3)]. This means that (1, 3)R (a, b), so b = 3a and
a ≠ 0 because b ≠ 0. Hence, (a, b) = (a, 3a). Conversely, let n ≠ 0. Then,
(1, 3)R (n, 3n) because 1 ⋅ 3n = 3 ⋅ n. Thus, (n, 3n) ∈ [(1, 3)].

EXAMPLE 4.2.9

Using the notation of Example 4.2.6, letRm be the relation defined by congruence
modulo m. For all n ∈ Z, define

[n]m = Rm(n).

Therefore, when m = 5, the equivalence classes are:
[0]5 = {… ,−10,−5, 0, 5, 10,…},
[1]5 = {… ,−9,−4, 1, 6, 11,…},
[2]5 = {… ,−8,−3, 2, 7, 12,…},
[3]5 = {… ,−7,−2, 3, 8, 13,…},
[4]5 = {… ,−6,−1, 4, 9, 14,…}.
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In addition,
[a]5 = [b]5 if and only if a ≡ b (mod 5).

The collection of all equivalence classes of a relation is a set named by the next
definition.

DEFINITION 4.2.10

Let R be an equivalence relation on A. The quotient set of A modulo R is
A∕R = {[a]R : a ∈ A}.

Observe by Exercise 3 that it is always the case that
A =

⋃

A∕R. (4.2)

EXAMPLE 4.2.11

Let m ∈ Z+. The quotient set Z∕Rm is denoted by Zm. That is,
Zm = {[0]m, [1]m,… , [m − 1]m}.

EXAMPLE 4.2.12

Define the relation R on R2 by
(a, b)R (c, d) if and only if b − a = d − c.

R is an equivalence relation by Exercise 2. We note that for any (a, b) ∈ R2,
[(a, b)] = {(x, y) : (x, y)R (a, b)}

= {(x, y) : y − x = b − a}
= {(x, y) : y = x + (b − a)}.

Therefore, the equivalence class of (a, b) is the line with a slope of 1 and a y-
intercept equal to (0, b − a). The equivalence classes of (0, 1.5) and (0,−1) are
illustrated in the graph in Figure 4.3. The quotient set R2∕R is the collection of
all such lines. Notice that

R2 =
⋃

R2∕R.

Partitions

In Example 4.2.12, we saw thatR2 is the union of all the lines with slope equal to 1, and
since the lines are parallel, they form a pairwise disjoint set. These properties can be
observed in the other equivalence relations that we have seen. Each set is equal to the
union of the equivalence classes, and the quotient set is pairwise disjoint. Generalizing
these two properties leads to the next definition.
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R(0, −1)

R(0, 1.5)

Figure 4.3 Two equivalence classes in R2 when (a, b)R (c, d) if and only if b − a = d − c.

DEFINITION 4.2.13

Let A be a nonempty set. The family P is a partition of A if and only if
∙ P ⊆ P(A),
∙
⋃

P = A,
∙ P is pairwise disjoint.

To illustrate the definition, let A = {1, 2, 3, 4, 5, 6, 7} and define the elements of the
partition to be A0 = {1, 2, 5}, A1 = {3}, and A2 = {4, 6, 7}. The family

P = {A1, A2, A3}

is a subset of P(A), A = A0 ∪ A1 ∪ A2, and P is pairwise disjoint. Therefore, P is a
partition of A. This is illustrated in Figure 4.4.

1

2
76

5

4

3

A

AA1 2

3

Figure 4.4 A partition of the set A = {1, 2, 3, 4, 5, 6, 7}.
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EXAMPLE 4.2.14

For each real number r ≥ 0, define Cr to be the circle with radius r centered at
the origin. Namely,

Cr =
{

(x, y) : √x2 + y2 = r
}

.

Let C = {Cr : r ∈ [0,∞)}. We claim that C is a partition of R2.
∙ C ⊆ P(R2) because Cr ⊆ R2 for all r ≥ 0.
∙ To prove that R2 = ⋃

r∈[0,∞) Cr, it suffices to show that R2 ⊆ ⋃

r∈[0,∞) Cr,
but this follows because if (a, b) ∈ R2, then

(a, b) ∈ C√

a2+b2
.

∙ To see that C is pairwise disjoint, let r, s ≥ 0 and assume that (a, b) is an
element of Cr ∩ Cs. Then,

r =
√

a2 + b2 = s,

which implies that Cr = Cs.

The set Z5 is a family of subsets of Z, has the property that ⋃Z5 = Z, and is
pairwise disjoint. Hence, Z5 is a partition for Z. We generalize this result to the next
theorem. It uses an arbitrary equivalence relation on a given set to define a partition
for that set. In this case, we say that the equivalence relation induces the partition.

THEOREM 4.2.15

If R is an equivalence relation on A, then A∕R is a partition of A.
PROOF

Take a set A with an equivalence relation R.
∙ Since an equivalence class is a subset of A, we have A∕R ⊆ P(A).
∙
⋃

A∕R = A is (4.2).
∙ Let [a], [b] ∈ A∕R and assume that there exists y ∈ [a] ∩ [b]. In other
words, aRy and bR y. Now take x ∈ [a]. This means that aRx. Since
xRa and yR b by symmetry, we have that xRy, and then xRb by tran-
sitivity. Thus, x ∈ [b], which shows [a] ⊆ [b]. Similarly, [b] ⊆ [a], so
[a] = [b].

The collection of equivalence relations forms a partition of a set. Conversely, if we
have a partition of a set, the partition gives rise to an equivalence relation on the set.
To see this, take any set A and a partition P of A. For all a, b ∈ A, define

aR b if and only if there exists C ∈ P such that a, b ∈ C.
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To show that R is an equivalence relation, take a, b, and c in A.
∙ Since a ∈ A and A =

⋃

P , there exists C ∈ P such that a ∈ C . Therefore,
aRa.

∙ Assume aR b. This means that a, b ∈ C for some C ∈ P . This, of course, is
the same as b, a ∈ C . Hence, bRa.

∙ Suppose aR b and bR c. Then, there are sets C andD in P so that a, b ∈ C and
b, c ∈ D. This means that C ∩D ≠ ∅. Since P is pairwise disjoint, C = D. So,
a and c are elements of C , and we have aR c.

This equivalence relation is said to be induced from the partition.
EXAMPLE 4.2.16

The sets
{… ,−10,−5, 0, 5, 10,…},
{… ,−9,−4, 1, 6, 11,…},
{… ,−8,−3, 2, 7, 12,…},
{… ,−7,−2, 3, 8, 13,…},
{… ,−6,−1, 4, 9, 14,…},

form a collection that is a partition of Z. The equivalence relation that is induced
from this partition is congruence modulo 5 (Example 4.2.9).

Exercises

1. For all a, b ∈ R ⧵ {0}, let aR b if and only if ab > 0.
(a) Show that R is an equivalence relation on R ⧵ {0}.
(b) Find [1] and [−3].

2. Define the relation S on R2 by (a, b)S (c, d) if and only if b−a = d− c. Prove that
S is an equivalence relation.
3. Let S be an equivalence relation on A. Prove that A = ⋃

a∈A[a].

4. Prove that if C is an equivalence class for some equivalence relation R and a ∈ C ,
then C = [a].
5. For all a, b ∈ Z, let aR b if and only if |a| = |b|.

(a) Prove R is an equivalence relation on Z.
(b) Sketch the partition of Z induced by this equivalence relation.

6. For all (a, b), (c, d) ∈ Z × Z, define (a, b)S (c, d) if and only if ab = cd.
(a) Show that S is an equivalence relation on Z × Z.
(b) What is the equivalence class of (1, 2)?
(c) Sketch the partition of Z × Z induced by this equivalence relation.

7. LetA be a set and a ∈ A. Show that the given relations are not equivalence relations
on P(A).
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(a) For all C,D ⊆ A, define C RD if and only if C ∩D ≠ ∅.
(b) For all C,D ⊆ A, define C S D if and only if a ∈ C ∩D.

8. Let z, z′ ∈ C and write z = a + bi and z′ = a′ + b′i. Define z = z′ to mean that
a = a′ and b = b′. Prove that R is an equivalence relation.
9. Find.

(a) [3]5
(b) [12]6
(c) [2]5 ∪ [27]5
(d) [4]7 ∩ [5]7

10. Let r be the remainder obtained when n is divided by m. Prove [n]m = [r]m.
11. Let c, m ∈ Z and suppose that gcd(c, m) = 1. Prove.

(a) There exists b such that bc ≡ 1 (mod m). (Notice that b is that multiplicative
inverse of c modulo m.)

(b) If ca ≡ cb (mod m), then a ≡ b (mod m).
(c) Prove that the previous implication is false if gcd(c, m) ≠ 1.

12. Prove that {(n, n + 1] : n ∈ Z} is a partition of R.
13. Prove that the following are partitions of R2.

(a) P = {{(a, b)} : a, b ∈ R}.
(b) V = {{(r, y) : y ∈ R} : r ∈ R}.
(c) ℋ = {R × (n, n + 1] : n ∈ Z}.

14. Is {[n, n + 1] × (n, n + 1) : n ∈ Z} a partition of R2? Explain.
15. Let R be a relation on A and show the following:

(a) R is reflexive if and only if R−1 is reflexive.
(b) R is symmetric if and only if R = R−1.
(c) R is symmetric if and only if (A × A) ⧵ R is symmetric.

16. Let R and S be equivalence relations on A. Prove or show false.
(a) R ∪ S is an equivalence relation on A.
(b) R ∩ S is an equivalence relation on A.

17. Prove for all relations R on A.
(a) R is reflexive if and only if ∀a(a ∈ [a]).
(b) R is symmetric if and only if ∀a∀b(a ∈ [b]↔ b ∈ [a]).
(c) R is transitive if and only if ∀a∀b∀c([b ∈ [a] ∧ c ∈ [b]]→ c ∈ [a]).
(d) R is an equivalence relation if and only if ∀a∀b((a, b) ∈ R↔ [a] = [b]).

18. LetR be a relation onAwith the property that if aR b and bR c, then c R a. Prove
that if R is also reflexive, R is an equivalence relation.
19. Define the relation R on C by a + biR c + di if and only if

√

a2 + b2 =
√

c2 + d2.
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(a) Prove R is an equivalence relation on C.
(b) Graph [1 + i] in the complex plane.
(c) Describe the partition that R induces on C.

20. Let R and S be relations on A. The symmetric closure of R is S if R ⊆ S and
for all symmetric relations T on A such that R ⊆ T , then S ⊆ T . Prove the following.

(a) R ∪ R−1 is the symmetric closure of R.
(b) A symmetric closure is unique.

4.3 PARTIAL ORDERS

While equivalence relations resemble equality, there are other common relations in
mathematics that we can model. To study some of their attributes, we expand Defini-
tion 4.2.3 with three more properties.

DEFINITION 4.3.1

Let R be a relation on A.
∙ R is irreflexive if a R̸ a for all a ∈ A.
∙ R is asymmetric when for all a, b ∈ A, if aR b, then b R̸ a.

∙ R is antisymmetric means that for all a, b ∈ A, if aR b and bRa, then
a = b.

Notice that a relation on a nonempty set cannot be both reflexive and irreflexive. How-
ever, many relations have neither property. For example, consider the relation R =
{(1, 1)} on {1, 2}. Since (1, 1) ∈ R, the relation R is not irreflexive, and R is not
reflexive because (2, 2) ∉ R. Likewise, a relation on a nonempty set cannot be both
symmetric and asymmetric.

EXAMPLE 4.3.2

The less-than relation on Z is irreflexive and asymmetric. It is also antisymmet-
ric. To see this, let a, b ∈ Z. Since a < b and b < a is false, the implication

if a < b and b < a, then a = b

is true. The ≤ relation is also antisymmetric. However, ≤ is neither irreflexive
nor asymmetric since 3 ≤ 3.

EXAMPLE 4.3.3

Let R = {(1, 2)} and S = {(1, 2), (2, 1)}. Both are relations on {1, 2}. The first
relation is asymmetric since 1R 2 but 2 R̸ 1. It is also antisymmetric, but S is
not antisymmetric because 2S 1 and 1S 2. Both the relations are irreflexive.
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EXAMPLE 4.3.4

Let R be a relation on a set A. We prove that
R is antisymmetric if and only if R ∩ R−1 ⊆ IA.

∙ Assume that R is antisymmetric and take (a, b) ∈ R ∩ R−1. This means
that (a, b) ∈ R and (a, b) ∈ R−1. Therefore, (b, a) ∈ R, and since R is
antisymmetric, a = b.

∙ Now suppose R ∩ R−1 ⊆ IA. Let (a, b), (b, a) ∈ R. We conclude that
(a, b) ∈ R−1, which implies that (a, b) ∈ R ∩ R−1. Then, (a, b) ∈ IA.Hence, a = b.

As an equivalence relation is a generalization of an identity relation, the following
relation is a generalization of ≤ on N. For this reason, instead of naming the relation
R, it is denoted by the symbol 4.

DEFINITION 4.3.5

If a relation4 on a setA is reflexive, antisymmetric, and transitive,4 is a partial
order on A and the ordered pair (A,4) is called a partially ordered set (or
simply a poset). Furthermore, for all a, b ∈ A, the notation a ≺ b means a 4 b
but a ≠ b.

For example, ≤ and = are partial orders on R, but < is not a partial order on R because
the relation < is not reflexive. Although = is a partial order on any set, in general an
equivalence relation is not a partial order (Example 4.2.6).

EXAMPLE 4.3.6

Divisibility (Definition 2.4.2) is a partial order on Z+. To prove this, let a, b, and
c be positive integers.

∙ a ∣ a since a = a ⋅ 1 and a ≠ 0.
∙ Suppose that a ∣ b and b ∣ a. This means that b = ak and a = bl, for some
k, l ∈ Z+. Hence, b = blk, so lk = 1. Since k and l are positive integers,
l = k = 1. That is, a = b.

∙ Assume that we have a ∣ b and b ∣ c. This means that b = al and c = bk
for some l, k ∈ Z+. By substitution, c = (al)k = a(lk). Hence, a ∣ c.

EXAMPLE 4.3.7

Let A be a collection of symbols and let A∗ denote the set of all strings over A
(as on page 5). Use the symbol� to denote the empty string, the string of length
zero. As with the empty set, the empty string is always an element of A∗. For
example, if A = {a, b, c}, then abc, aaabbb, c, and � are elements of A∗. Now,
take �, � ∈ A∗. The concatenation of � and � is denoted by �⌢� and is the
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□

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Figure 4.5 A partial order defined on {0, 1}∗.

string consisting of the elements of � followed by those of �. For example, if
� = 011 and � = 1010, then �⌢� = 0111010. Finally, for all �, � ∈ A∗, define

� 4 � if and only if there exists � ∈ A∗ such that � = �⌢�.
It can be shown that 4 is a partial order on A∗ (Exercise 8) with the structure
seen in Figure 4.5 for A = {0, 1}.
The partial order ≤ on R has the property that for all a, b ∈ R, either a < b, b < a,

or a = b. As we see in Figure 4.5, this is not the case for every partially ordered set.
We do, however, have the following slightly weaker property.

THEOREM 4.3.8 [Weak-Trichotomy Law]

If4 is a partial order on A, for all a, b ∈ A, at most one of the following are true:
a ≺ b, b ≺ a, or a = b.

PROOF
Let a, b ∈ A. We have three cases to consider.

∙ Suppose a ≺ b. This means that a 4 b and a ≠ b. If in addition b ≺ a, by
transitivity a ≺ a, which is a contradiction.

∙ That b ≺ a precludes both a ≺ b and a = b is proved like the first case.
∙ If a = b, then by definition of ≺ it is impossible for a ≺ b or b ≺ a to be
true.

Technically, subset is not a relation, but in a natural way, it can be considered as one.
Let ℱ be a family of sets. Define

S = {(A,B) : A ⊆ B ∧ A,B ∈ ℱ }.

Associate ⊆ with the relation S.
EXAMPLE 4.3.9

Let A be a nonempty set. We show that (P(A), ⊆) is a partially ordered set. Let
B, C , and D be subsets of A.



180 Chapter 4 RELATIONS AND FUNCTIONS

∙ Since B ⊆ B, the relation ⊆ is reflexive.
∙ Since B ⊆ C and C ⊆ B implies that B = C (Definition 3.3.7), ⊆ is
antisymmetric.

∙ Since B ⊆ C and C ⊆ D implies B ⊆ D (Theorem 3.3.6), we see that ⊆ is
transitive.

This example is in line with what we know about subsets. For instance, ifA ⊂ B,
then we conclude that B ⊄ A and A ≠ B, which is what we expect from the
weak-trichotomy law (4.3.8).

Bounds

Let 4 be a partial order on A with elements m and m′ such that a 4 m and a 4 m′
for all a ∈ A. In particular, this implies that m 4 m′ and m′ 4 m, so since 4 is
antisymmetric, we conclude thatm = m′. Similarly, ifm 4 a and m′ 4 a for all a ∈ A,
then m = m′. This argument justifies the use of the word the in the next definition.

DEFINITION 4.3.10

Let (A,4) be a poset and m ∈ A.
∙ m is the least element of A (with respect to 4) if m 4 a for all a ∈ A.
∙ m is the greatest element of A (with respect to 4) if a 4 m for all a ∈ A.

There is no guarantee that a partially ordered set will have a least or a greatest element.
In Example 4.3.9, the greatest element of P(A) with respect to ⊆ is A and the least
element is ∅. However, in Example 4.3.7 (Figure 4.5), the least element of A∗ is �,
but there is no greatest element.

EXAMPLE 4.3.11

If A is a finite set of real numbers, A has a least and a greatest element with
respect to ≤. Under the partial order ≤, the set Z+ also has a least element but no
greatest element, and both {5n : n ∈ Z−} and Z− have greatest elements but no
least elements. To show that B = {5n : n ∈ Z+} has a least element with respect
to ≤, use the fact that the least element of Z+ is 1. Therefore, the least element
of B is 5 because 5 ∈ B and 5(1) ≤ 5n for all n ∈ Z+.
Some sets will not have a least or greatest element with a given partial order but

there will still be elements that are considered greater or lesser than every element of
the set.

DEFINITION 4.3.12

Let 4 be a partial order on A and B ⊆ A.
∙ u ∈ A is an upper bound of B if b 4 u for all b ∈ B. The element u is the
least upper bound of B if it is an upper bound and for all upper bounds u′
of B, u 4 u′.
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∙ l ∈ A is a lower bound of B if l 4 b for all b ∈ B. The element l is the
greatest lower bound of B if it is a lower bound and for all lower bounds
l′ of B, l′ 4 l.

In the definition we can write the word the because the order is antisymmetric.
EXAMPLE 4.3.13

The interval (3, 5) is a subset of R. Under the partial order ≤, both 5 and 10 are
upper bounds of this interval, while 5 is a least upper bound. Also, 3 and −� are
lower bounds, but 3 is the greatest lower bound.

EXAMPLE 4.3.14

Assume that C ⊆ P(Z). Since the elements of C are subsets of Z, we conclude
that ⋃C ∈ P(Z) (Definition 3.4.8). If A ∈ C , then A ⊆

⋃

C . Therefore, ⋃C
is an upper bound of C with respect to ⊆. To see that it is the least upper bound,
let U be any upper bound of C . Take x ∈ ⋃

C . This means that there exists
D ∈ C such that x ∈ D. Since U is an upper bound of C , D ⊆ U . Hence,
x ∈ U , and we conclude that⋃C ⊆ U .

Comparable and Compatible Elements

In Figure 4.5, we see that 01 4 010 and 01 4 011. However, 010 ⋠ 011 and 011 ⋠
010. This means that in the poset of Example 4.3.7, there are pairs of elements that are
related to each other and there are other pairs that are not.

DEFINITION 4.3.15

Let (A,4) be a poset and a, b ∈ A. If a 4 b or b 4 a, then a and b are com-
parable with respect to 4. Elements of A are incomparable if they are not
comparable.
Continuing our review of the partially ordered set of Example 4.3.7, we note that

the element� has the property that no element is less than it, but as seen in Figure 4.5,
for every element of A∗, there exists an element of A∗ that is greater. However, that
same relation defined on

A = {� ∈ A∗ : � has at most 3 characters} (4.3)
has the property that 000, 001, 010, 011, 100, 101, 110, 111 have no elements greater
than them. This leads to the next definition.

DEFINITION 4.3.16

Let (A,4) be a poset and m ∈ A.
∙ m is aminimal element of A (with respect to 4) if a ⊀ m for all a ∈ A.
∙ m is amaximal element of A (with respect to 4) if m ⊀ a for all a ∈ A.
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Therefore, the empty string is a minimal element of A (4.3), and 000, 001, 010, 011,
100, 101, 110, 111 are maximal. Notice that every least element is minimal and every
greatest element is maximal.

Although not every pair of elements is comparable in the partially ordered set of
Example 4.3.7, there are infinite sequences of comparable elements, such as

� 4 0 4 01 4 001 4 0001 4 · · · .

DEFINITION 4.3.17

A subset C of the poset (A,4) is a chain with respect to 4 if a is comparable to
b for all a, b ∈ C .
When Z is partially ordered by ≤, the sets {0, 1, 2, 3,…}, {… ,−3,−2,−1, 0}, and

{… ,−2, 0, 2, 4,…} are chains. In P(Z), both
{{1, 2}, {1, 2, 3, 4}, {1, 2, 3, 4, 5, 6}}

and
{∅, {0}, {0, 1}, {0, 1, 2},…}

are chains with respect to ⊆.
EXAMPLE 4.3.18

To see that {Ak : k ∈ Z+} where Ak = {x ∈ Z : (x − 1)(x − 2) · · · (x − k) = 0}
is a chain with respect to ⊆, take m, n ∈ Z+. By definition,

Am = {1, 2,… , m}

and
An = {1, 2,… , n}.

If m ≤ n, then Am ⊆ An, otherwise An ⊆ Am.

EXAMPLE 4.3.19

Let C0 and C1 be chains of A with respect to 4. Take a, b ∈ C0 ∩ C1. Then,
a, b ∈ C0, so a 4 b or b 4 a. Therefore, C0 ∩ C1 is a chain. However, the unionof two chains might not be a chain. For example, {{1}, {1, 2}} and {{1}, {1, 3}}
are chains in (P(Z), ⊆), but {{1}, {1, 2}, {1, 3}} is not a chain because {1, 2} *
{1, 3} and {1, 3} * {1, 2}.
The sets Z, Q, and R are chains of R with respect to ≤. In fact, any subset of R is a

chain of R because subsets of chains are chains. This motivates the next definition.
DEFINITION 4.3.20

The poset (A,4) is a linearly ordered set and4 is a linear order if A is a chain
with respect to 4.
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Since every subset A of R is a chain with respect to ≤, the relation ≤ is a linear order
on A. Furthermore, since every pair of elements in a linear order are comparable,
Theorem 4.3.8 can be strengthened.

THEOREM 4.3.21 [Trichotomy Law]

If 4 is a linear order on A, for all a, b ∈ A, exactly one of the following are true:
a ≺ b, b ≺ a, or a = b.
Although it is not the case that every pair of elements of the poset defined in Exam-

ple 4.3.7 is comparable, it is the case that for any given pair of elements, there exists
another element that is related to the given elements. For example, for the pair 100 and
110, 1 4 100 and 1 4 110. Also, for the pair 101 and 10, 10 4 101 and 10 4 10.

DEFINITION 4.3.22

Let (A,4) be a poset. The elements a, b ∈ A are compatible if there exists c ∈ A
such that c 4 a and c 4 b. If a and b are not compatible, they are incompatible
and we write a ⟂ b.

Observe that if a and b are comparable, they are also compatible. On the other hand, it
takes some work to define a relation in which every pair of elements is incompatible.

DEFINITION 4.3.23

A subset D of a poset (A,4) is an antichain with respect to 4 when for all
a, b ∈ D, if a ≠ b, then a ⟂ b.

The sets
{{n} : n ∈ Z}

and
{{1}, {2, 3}, {4, 5, 6}, {7, 8, 9, 10},…}

are antichains of P(Z) with respect to ⊆.

Well-Ordered Sets

The notion of a linear order incorporates many of the properties of ≤ on N since ≤ is
reflexive, antisymmetric, and transitive, and N is a chain with respect to ≤. However,
there is one important property of (N,≤) that is not included among those of a linear
order. Because of the nature of the natural numbers, every subset ofN that is nonempty
has a least element. For example, 5 is the least element of {5, 7, 32, 99} and 2 is the
least element of {2, 4, 6, 8,…}. We want to be able to identify those partial orders that
also have this property.

DEFINITION 4.3.24

The linearly ordered set (A,4) is a well-ordered set and 4 is a well-order if
every nonempty subset of A has a least element with respect to 4.
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According to Definition 4.3.24, (N,≤) is a well-ordered set, but this fact about the
natural numbers cannot be proved without making an assumption. Therefore, so that
we have at least one well-ordered set with which to work, we assume the following.

AXIOM 4.3.25

(N,≤) is a well-ordered set.
Coupling Axiom 4.3.25 with the next theorem will yield infinitely many well-ordered
sets.

THEOREM 4.3.26

If (A,4) is well-ordered and B is a nonempty subset of A, then (B,4) is well-
ordered.

PROOF
Let B ⊆ A and B ≠ ∅. To prove that B is well-ordered, let C ⊆ B and C ≠ ∅.
Then, C ⊆ A. Since 4 well-orders A, we know that C has a least element with
respect to 4.

Because Z ∩ [5,∞) ⊆ Z+ ⊆ N, by Axiom 4.3.25 and Theorem 4.3.26, both (Z+,≤)
and (Z ∩ [5,∞) ,≤) are well-ordered sets.

EXAMPLE 4.3.27

Let A = {n� : n ∈ N}. To prove that A is well-ordered by ≤, let B ⊆ A such
that B ≠ ∅. This means that there exists a nonempty subset I of N such that
B = {n� : n ∈ I}. Since N is well-ordered, I has least element m. We claim
that m� is the least element of B. To see this, take b ∈ B. Then, b = i� for some
i ∈ I . Since m is the least element of I , m ≤ i. Therefore, m� ≤ i� = b.
To prove that a set A is not well-ordered by 4, we must find a nonempty subset B

of A that does not have a least element. This means that for every b ∈ B, there exists
c ∈ B such that c ≺ b. That is, there are elements bn ∈ B (n ∈ N) such that

· · · ≺ b2 ≺ b1 ≺ b0.

This informs the next definition.
DEFINITION 4.3.28

Let 4 be a partial order on A and B = {ai : i ∈ N} be a subset of A.
∙ B is increasing means i < j implies ai ≺ aj for all i, j ∈ N.
∙ B is decreasing means i < j implies aj ≺ ai for all i, j ∈ N.

If a set is well-ordered, it has a least element, but the converse is not true. To see
this, consider A = {0, 1∕2, 1∕3, 1∕4,…}. It has a least element, namely, 0, but A also
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contains the decreasing set
{1
2
, 1
3
, 1
4
, 1
5
,…

}

. (4.4)
Therefore, A has a subset without a least element, so A is not well-ordered. We sum-
marize this observation with the following theorem, and leave its proof to Exercise 23.

THEOREM 4.3.29

(A,4) is not a well-ordered set if and only if (A,4) does not have a decreasing
subset.

Theorem 4.3.29 implies that any finite linear order is well-ordered.
EXAMPLE 4.3.30

The decreasing sequence (4.4) with Theorem 4.3.29 shows that the sets (0, 1),
[0, 1], Q, and {1∕n : n ∈ Z+} are not well-ordered by ≤.
We close this section by proving two important results from number theory. Their

proofs use Axiom 4.3.25. The strategy is to define a nonempty subset of a well-ordered
set. Its least element r will be a number that we want. This least element also needs
to have a particular property, say p(r). To show that it has the property, assume ¬p(r)
and use this to find another element of the set that is less than r. This contradicts the
minimality of r allowing us to conclude p(r).

THEOREM 4.3.31 [Division Algorithm]

If m, n ∈ N with m ≠ 0, there exist unique q, r ∈ N such that r < m and
n = mq + r.

PROOF
Uniqueness is proved in Example 2.4.14. To prove existence, take m, n ∈ N and
define

S = {k ∈ N : ∃l(l ∈ N ∧ n = ml + k)}.
Notice that n ∈ S, so S ≠ ∅. Therefore, S has a least element by Axiom 4.3.25.
Call it r and write n = mq + r for some natural number q. Assume r ≥ m, which
implies that r − m ≥ 0. Also,

n = m(q − 1) + r − m

because
r − m = n − mq − m = n − m(q + 1),

so r − m ∈ S. Since r > r − m because m is positive, r cannot be the minimum
of S, a contradiction.

The value q of the division algorithm (Theorem 4.3.31) is called the quotient and r is
the remainder. For example, if we divide 5 into 17, the division algorithm returns a
quotient of 3 and a remainder of 2, so we can write that 17 = 5(3) + 2. Notice that
2 < 3.
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Call n ∈ Z a linear combination of the integers a and b if n = ua + vb for some
u, v ∈ Z. Since 37 = 5(2) + 3(9), we see that 37 is a linear combination of 2 and 9.
Furthermore, if d ∣ a and d ∣ b, then d ∣ ua + vb. To see this, write a = dl and b = dk
for some l, k ∈ Z. Then,

ua + vb = udl + vdk = d(ul + vk),

and this means d ∣ ua + vb.
THEOREM 4.3.32

Let a, b ∈ Z with not both equal to 0. If c = gcd(a, b), there exists m, n ∈ Z such
that c = ma + nb.

PROOF
Define

T = {z ∈ Z+ : ∃x∃y(x, y ∈ Z ∧ z = xa + yb)}.
Notice that T is not empty because a2 + b2 ∈ T . By Axiom 4.3.25, T has a least
element d, so write d = ma + nb for some m, n ∈ Z.

∙ Since d > 0, the division algorithm (4.3.31) yields a = dq + r for some
natural numbers q and r with r < d. Then,

r = a − dq = a − (ma − nb)q = (1 − mq)a + (nq)b.

If r > 0, then r ∈ T , which is impossible because d is the least element of
T . Therefore, r = 0 and d ∣ a. Similarly, d ∣ b.

∙ To show that d is the greatest of the common divisors, suppose s ∣ a and
s ∣ b with s ∈ Z+. By definition, a = sk and b = sl for some k, l ∈ Z.
Hence,

d = m(sk) + n(sl) = s(mk − nl).

Thus, s ≤ d because s is nonzero and s divides d (Exercise 25).

Exercises

1. Is (∅, ⊆) a partial order, linear order, or well order? Explain.
2. For each relation on {1, 2}, determine if it is reflexive, irreflexive, symmetric, asym-
metric, antisymmetric, or transitive.

(a) {(1, 2)}
(b) {(1, 2), (2, 1)}
(c) {(1, 1), (1, 2), (2, 1)}
(d) {(1, 1), (1, 2), (2, 2)}
(e) {(1, 1), (1, 2), (2, 1), (2, 2)}
(f) ∅

3. Give an example of a relation that is neither symmetric nor asymmetric.
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4. Let R be a relation on A. Prove that R is reflexive if and only if (A × A) ⧵ R is
irreflexive.
5. Show that a relation R on A is asymmetric if and only if R ∩ R−1 = ∅.
6. Let (A,4) and (B,≤) be posets. Define ∼ on A × B by

(a, b) ∼ (a′, b′) if and only if a 4 a′ and b ≤ b′.

Show that ∼ is a partial order on A × B.
7. For any alphabet A, prove the following.

(a) For all �, �, � ∈ A∗, �⌢(�⌢�) = (�⌢�)⌢�.
(b) There exists �, � ∈ A∗ such that �⌢� ≠ �⌢�.
(c) A∗ has an identity with respect to⌢, but for all � ∈ A∗, there is no inverse

for � if � ≠ �.
8. Prove that A∗ from Example 4.3.7 is partially ordered by 4.
9. Prove that (P(A), ⊆) is not a linear order if A has at least three elements.
10. Show that (A∗,4) is not a linear order if A has at least two elements.
11. Prove that the following families of sets are chains with respect to ⊆.

(a) {[0, n] : n ∈ Z+}
(b) {(2n)Z : n ∈ N} where (2n)Z = {2n ⋅ k : k ∈ Z}
(c) {Bn : n ∈ N} where Bn = ⋃

{Ai : i ∈ N ∧ i ≤ n} and Ai is a set for all
i ∈ N

12. Can a chain be disjoint or pairwise disjoint? Explain.
13. Suppose that {Ai : i ∈ N} is a chain of sets such that for all i ≤ j, Ai ⊆ Aj . Provefor all k ∈ N.

(a) ⋃

{Ai ∶ i ∈ N ∧ i ≤ k} = Ak
(b) ⋂

{Ai ∶ i ∈ N ∧ i ≤ k} = A0

14. Let {An : n ∈ N} be a family of sets. For every m ∈ N, define Bm = ⋃m
i=0 Ai.Show that {Bm : m ∈ N} is a chain.

15. Let Ci be a chain of the poset (A,4) for all i ∈ I . Prove that ⋂i∈I Ci is a chain.Is⋃i∈I Ci necessarily a chain? Explain.
16. Let (A,4) and (B,≤) be linear orders. Define ∼ on A × B by

(a, b) ∼ (a′, b′)

if and only if
a ≺ a′ or a = a′ and b ≤ b′.

This relation is called a lexicographical order since it copies the order of a dictionary.
(a) Prove that (A × B,∼) is a linear order.
(b) Suppose that (a, b) is a maximal element of A × B with respect to ∼. Show

that a is a maximal element of A with respect to 4.
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17. Let A be a set. Prove that B ⊆ P(A) ⧵ {∅} is an antichain with respect to ⊆ if and
only if B is pairwise disjoint.
18. Prove the following true or false.

(a) Every well-ordered set contains a least element.
(b) Every well-ordered set contains a greatest element.
(c) Every subset of a well-ordered set contains a least element.
(d) Every subset of a well-ordered set contains a greatest element.
(e) Every well-ordered set has a decreasing subset.
(f) Every well-ordered set has a increasing subset.

19. For each of the given sets, indicate whether or not it is well-ordered by ≤. If it is,
prove it. If it is not, find a decreasing sequence of elements of the set.

(a) {
√

2, 5, 6, 10.56, 17,−100}
(b) {2n : n ∈ N}
(c) {�∕n : n ∈ Z+}
(d) {�∕n : n ∈ Z−}
(e) {−4,−3,−2,−1,…}
(f) Z ∩ (�,∞)
(g) Z ∩ (−7,∞)

20. Prove that (Z ∩ (x,∞),≤) is a well-ordered set for all x ∈ R.
21. Show that a well-ordered set has a unique least element.
22. Let (A,4) be a well-ordered set. If B ⊆ A and there is an upper bound for B in A,
then B has a greatest element.
23. Prove Theorem 4.3.29.
24. Where does the proof of Theorem 4.3.31 go wrong if m = 0?
25. Prove that if a ∣ b, then a ≤ b for all a, b ∈ Z.
26. Let a, b, c ∈ Z. Show that if gcd(a, c) = gcd(b, c) = 1, then gcd(a, bc) = 1.
27. Let a, b ∈ Z and assume that gcd(a, b) = 1. Prove.

(a) If a ∣ n and b ∣ n, then ab ∣ n.
(b) gcd(a + b, b) = gcd(a + b, a) = 1.
(c) gcd(a + b, a − b) = 1 or gcd(a + b, a − b) = 2.
(d) If c ∣ a, then gcd(b, c) = 1.
(e) If c ∣ a + b, then gcd(a, c) = gcd(b, c) = 1.
(f) If d ∣ ac and d ∣ bc, then d ∣ c.

28. Let a, b ∈ Z, where at least one is nonzero. Prove that S = T if
S = {x : ∃l[l ∈ Z ∧ x = l gcd(a, b)]}

and
T = {x : x > 0 ∧ ∃u∃v(u, v ∈ Z ∧ x = ua + vb)}.
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29. Prove that if d ∣ a and d ∣ b, then d ∣ gcd(a, b) for all a, b, d ∈ Z.

4.4 FUNCTIONS

From algebra and calculus, we know what a function is. It is a rule that assigns to each
possible input value a unique output value. The common picture is that of a machine
that when a certain button is pushed, the same result always happens. In basic algebra
a relation can be graphed in the Cartesian plane. Such a relation will be a function if
and only if every vertical line intersects its graphs at most once. This is known as the
vertical line test (Figure 4.6). This criteria is generalized in the next definition.

DEFINITION 4.4.1

Let A and B be sets. A relation f ⊆ A × B is a function means that for all
(x, y), (x′, y′) ∈ A × B,

if x = x′, then y = y′.
The function f is an n-ary function if there exists setsA0, A1,… , An−1 such that
A = A0 × A1 × · · · × An−1. If n = 1, then f is a unary function, and if n = 2,
then f is a binary function,

EXAMPLE 4.4.2

The set {(1, 2), (4, 5), (6, 5)} is a function, but {(1, 2), (1, 5), (6, 5)} is not since it
contains (1, 2) and (1, 5). Also, ∅ is a function (Exercise 16).

Intersects at most once

Figure 4.6 Passing the vertical line test.
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EXAMPLE 4.4.3

Define f = {(u, 1 + 2 cos�u) : u ∈ R}. Assume that both (x, 1 + 2 cos�x) and
(x′, 1 + 2 cos�x′) are elements of f . Then, because cosine is a function,

x = x′ ⇒ �x = �x′

⇒ cos�x = cos�x′

⇒ 2 cos�x = 2 cos�x′

⇒ 1 + 2 cos�x = 1 + 2 cos�x′.

Therefore, f is a function.

EXAMPLE 4.4.4

The standard arithmetic operations are functions. For example, taking a square
root is a unary function, while addition, subtraction, multiplication, and division
are binary functions. To illustrate this, addition on Z is the set

A = {((a, b), a + b) : a, b ∈ Z}. (4.5)
Let f ⊆ A × B be a function. This implies that for all a ∈ A, either [a]f = ∅ or

[a]f is a singleton (Definition 4.2.7). For example, if f = {(1, 2), (4, 5), (6, 5)}, then
[1]f = {2} and [3]f = ∅. Because [a]f can contain at most one element, we typically
simplify the notation.

DEFINITION 4.4.5

Let f be a function. For all a ∈ A, define
f (a) = b if and only if [a]f = {b}

and write that f (a) is undefined if [a]f = ∅.
For example, using (4.5),

A((5, 7)) = 12,

butA(5, �) is undefined. With ordered n-tuples, the outer parentheses are usually elim-
inated so that we write

A(5, 7) = 12.

Moreover, if D ⊆ A is the domain of the function f , write the function notation

f : D → B

and call B a codomain of f (Figure 4.7). Because functions are often represented by
arrows that “send” one element to another, a function can be called amap. If f (x) = y,
we can say that “f maps x to y.” We can also say that y is the image of x under f and
x is a pre-image of y. For example, if

f = {(3, 1), (4, 2), (5, 2)},
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f : D → B

Function name

Domain

Codomain

Figure 4.7 Function notation.

f maps 3 to 1, 2 is the image of 4, and 5 is a pre-image of 2 (Figure 4.8). If g is also a
function with domain D and codomain B, we can use the abbreviation

f, g : D → B

to represent both functions. An alternate choice of notation involves referring to the
functions as D → B.

EXAMPLE 4.4.6

If f (x) = cos x, then f maps � to −1, 0 is the image of �∕2, and �∕4 is a
pre-image of√2∕2.

EXAMPLE 4.4.7

Let A be any set. The identity relation on A (Definition 4.1.2) is a function, so
call IA the identity map and write

IA(x) = x.

Sometimes a function f is defined using a rule that pairs an element of the function’s
domain with an element of its codomain. When this is done successfully, f is said to
be well-defined. Observe that proving that f is well-defined is the same as proving it
to be a function.

1

25

4

3

f

Figure 4.8 The map f = {(3, 1), (4, 2), (5, 2)}.
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EXAMPLE 4.4.8

Let f : R → R be defined by f (x) = 1 + 2 cos�x. This is the function
f = {(x, 1 + 2 cos�x) : x ∈ R}.

The work of Example 4.4.3 shows that f is well-defined.
Before we examine another example, let us set a convention on naming functions.

It is partly for aesthetics, but it does help in organizing functions based on the type of
elements in their domains and ranges.

∙ Use English letters (usually, f , g, and ℎ) for naming functions that involve num-
bers. Typically, these will be lowercase, but there are occasions when we will
choose them to be uppercase.

∙ Use Greek letters (often ' or  ) for general functions or those with domains not
consisting of numbers. They are also usually lowercase, but uppercase Greek
letters like Φ and Ψ are sometimes appropriate. (See the appendix for the Greek
alphabet.)

EXAMPLE 4.4.9

Let n, m ∈ Z+ such that m ∣ n. Define '([a]n) = [a]m for all a ∈ Z. This means
that

' = {([a]n, [a]m) : a ∈ Z}.
It is not clear that ' is well-defined since an equivalence class can have many
representatives, so assume that [a]n = [b]n for a, b ∈ Z. Therefore, n ∣ a − b.
Then, by hypothesis, m ∣ a − b, and this yields

'([a]n) = [a]m = [b]m = '([b]n).

EXAMPLE 4.4.10

Let x ∈ R. Define the greatest integer function as
⟦x⟧ = the greatest integer ≤ x.

For example, ⟦5⟧ = 5, ⟦1.4⟧ = 1, and ⟦−3.4⟧ = −4. The greatest integer
function is a function R → Z. It is well-defined because the relation ≤ well-
orders Z (Exercise 4.3.22).
If a relation on R is not a function, it will fail the vertical line test (Figure 4.9). To

generalize, let ' ⊆ A × B. To show that ' is not a function, we must show that there
exists (x, y1), (x, y2) ∈ ' such that y1 ≠ y2.

EXAMPLE 4.4.11

The relation f = IR ∪ {(x,−x) : x ∈ R} is not a function since (4, 4) ∈ f and
(4,−4) ∈ f .
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(x,   )

y

y

x

1

2
(x,    y2

y1

)   

Figure 4.9 The relation is not a function.

EXAMPLE 4.4.12

Define ' ⊆ Z2 × Z3 by '([a]2) = [a]3 for all a ∈ Z. Since 3 does not divide 2,
' is not well-defined. This is proved by noting that [0]2 = [2]2 but [0]3 ≠ [2]3.
There will be times when we want to examine sets of functions. If each function is

to have the same domain and codomain, we use the following notation.
DEFINITION 4.4.13

If A and B are sets,
AB = {' : ' is a function A→ B}.

For instance, AB is a set of real-valued functions if A,B ⊆ R.
EXAMPLE 4.4.14

If an is a sequence of real numbers with n = 0, 1, 2,… , the sequence an is anelement of NR. Illustrating this, the sequence
an = (−1∕2)n

is a function and can be graphed as in Figure 4.10.

EXAMPLE 4.4.15

Let A ⊆ R and fix a ∈ A. The evaluation map,
�a : AA→ A,

is defined as
�a(f ) = f (a).
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Figure 4.10 an = (−1∕2)n is a function.

For example, if g(x) = x2, then �3(g) = 9. Observe that the evaluation map is an
element of (AA)A.

Equality

Since functions are sets, we already know that two functions are equal when they con-
tain the same ordered pairs. However, there is a common test to determine function
equality other than a direct appeal to Definition 3.3.7.

THEOREM 4.4.16

Functions ', : A→ B are equal if and only if '(x) =  (x) for all x ∈ A.
PROOF

Sufficiency is clear, so to prove necessity suppose that '(x) =  (x) for every
x ∈ A. Take (a, b) ∈ '. This means that '(a) = b. By hypothesis,  (a) = b,
which implies that (a, b) ∈  . Hence, ' ⊆ g. The proof of  ⊆ ' is similar, so
' = g.

We use Theorem 4.4.16 in the next examples.
EXAMPLE 4.4.17

Let f and g be functions R → R defined by
f (x) = (x − 3)2 + 2

and
g(x) = x2 − 6x + 11.

We show that f = g by taking x ∈ R and calculating
f (x) = (x − 3)2 + 2 = (x2 − 6x + 9) + 2 = x2 − 6x + 11 = g(x).
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EXAMPLE 4.4.18

Let ', : Z → Z6 be functions such that
'(n) = [n]6

and
 (n) = [n + 12]6.

Take n ∈ Z. We show that [n + 12]6 = [n]6 by proceeding as follows:
x ∈ [n + 12]6 ⇔ ∃k [k ∈ Z ∧ x = n + 12 + 6k]

⇔ ∃k [k ∈ Z ∧ x = n + 6(2 + k)]
⇔ x ∈ [n]6.

Therefore, ' =  .

EXAMPLE 4.4.19

Define
 : R →

(RR
)

R

by  (x) = �x for all x ∈ R (Example 4.4.15). We show that  is well-defined.
Take a, b ∈ R and assume that a = b. To show that  (a) =  (b), we prove
�a = �b. Therefore, let f ∈ RR. Since f is a function and a, b ∈ dom(f ), we
have that f (a) = f (b). Thus,

�a(f ) = f (a) = f (b) = �b(f ).

By Theorem 4.4.16, we see that two functions f and g are not equal when either
dom(f ) ≠ dom(g) or f (x) ≠ g(x) for some x in their common domain. For example,
f (x) = x2 and g(x) = 2x are not equal because f (3) = 9 and g(3) = 6. Although
these two functions differ for every x ≠ 0 and x ≠ 2, it only takes one inequality to
prove that the functions are not equal. For example, if we define

ℎ(x) =

{

x2 if x ≠ 0,
7 if x = 0,

then f ≠ ℎ since f (0) = 0 and ℎ(0) = 7.

Composition

We now consider the composition of relations when those relations are functions.
THEOREM 4.4.20

If ' : A → B and  : C → D are functions such that ran(') ⊆ C , then  ◦ ' is
a function A→ D and ( ◦ ')(x) =  ('(x)).
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PROOF
Because the range of ' is a subset of C , we know that ' ⊆ A×C and  ⊆ C×D.
Let (a, d1), (a, d2) ∈  ◦ '. This means by Definition 4.1.9 that there exists
c1, c2 ∈ C such that (a, c1), (a, c2) ∈ ' and (c1, d1), (c2, d2) ∈  . Since ' is a
function, c1 = c2, and then since  is a function, d1 = d2. Therefore,  ◦ ' is a
function, which is clearly A→ D. Furthermore,

 ◦ ' = {(x, z) : ∃y[y ∈ C ∧ (x, y) ∈ ' ∧ (y, z) ∈  ]}
= {(x, z) : ∃y[y ∈ C ∧ '(x) = y ∧  (y) = z]}
= {(x, z) : x ∈ A ∧  ('(x)) = z}
= {(x,  ('(x))) : x ∈ A}.

Hence, ( ◦ ')(x) =  ('(x)).
The ran(') ⊆ C condition is important to Theorem 4.4.20. For example, take the real-
valued functions f (x) = x and g(x) = √

x. Since f (−1) = −1 but g(−1) ∉ R, we
conclude that (g ◦ f )(−1) is undefined.

EXAMPLE 4.4.21

Define the two functions f : R → Z and g : R ⧵ {0} → R by f (x) = ⟦x⟧ and
g(x) = 1∕x. Since ran(f ) = Z * dom(g), there are elements of R for which
g ◦ f is undefined. However,

ran(g) = R ⧵ {0} ⊆ R = dom(f ),
so f ◦ g is defined and for all x ∈ R,

(f ◦ g)(x) = f (g(x)) = f (1∕x) = ⟦1∕x⟧.

EXAMPLE 4.4.22

Let  : ZZ → Z be defined by  (f ) = �3(f ) and also let ' : Z → Z7 be
'(n) = [n]7. Since ran( ) ⊆ dom('), ' ◦  is defined. Thus, if g : Z → Z is
defined as g(n) = 3n,

(' ◦  )(g) = '( (g)) = '(g(3)) = '(9) = [9]7 = [2]7.

We should note that function composition is not a binary operation unless both func-
tions areA→ A for some setA. In this case, function composition is a binary operation
on AA.

Restrictions and Extensions

There are times when a subset of a given function is required. For example, consider
f = {(x, x2) : x ∈ R}.
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If only positive values of x are required, we can define
g = {(x, x2) : x ∈ (0,∞)}

so that g ⊆ f . We have notation for this.
DEFINITION 4.4.23

Let ' : A→ B be a function and C ⊆ A.
∙ The restriction of ' to C is the function ' �C : C → B so that

(' �C)(x) = '(x) for all x ∈ C.

∙ The function  : D → E is an extension of ' if A ⊆ D, B ⊆ E, and
 �A = '.

EXAMPLE 4.4.24

Let f = {(1, 2), (2, 3), (3, 4), (4, 1)} and g = {(1, 2), (2, 3)}. We conclude that
g = f � {1, 2}, and f is an extension of g.

EXAMPLE 4.4.25

Let ' : U → V be a function and A,B ⊆ U . We conclude that
' � (A ∪ B) = (' �A) ∪ (' �B)

because
(x, y) ∈ ' � (A ∪ B)⇔ y = '(x) ∧ x ∈ A ∪ B

⇔ y = '(x) ∧ (x ∈ A ∨ x ∈ B)
⇔ y = '(x) ∧ x ∈ A ∨ y = '(x) ∧ x ∈ B
⇔ (x, y) ∈ ' �A ∨ (x, y) ∈ ' �B
⇔ (x, y) ∈ (' �A) ∪ (' �B).

Binary Operations

Standard addition and multiplication of real numbers are functions R × R → R (Ex-
ample 4.4.4). This means two things. First, given any two real numbers, their sum or
product will always be the same number. For instance, 3+5 is 8 and never another num-
ber. Second, given any two real numbers, their sum or product is also a real number.
Notice that subtraction also has these two properties when it is considered an operation
involving real numbers, but when we restrict substraction to Z+, it no longer has the
second property because the difference of two positive integers might not be a positive
integer. That is, subtraction is not a function Z+ × Z+ → Z+.
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DEFINITION 4.4.26

A binary operation ∗ on the nonempty set A is a function A × A→ A.
The symbol that represents the addition function is +. It can be viewed as a function
R → R. Therefore, using function notation, +(3, 5) = 8. However, we usually write
this as 3 + 5 = 8. Similarly, since ∗ represents an operation like addition, instead of
writing ∗(a, b), we usually write a ∗ b,

To prove that a relation ∗ is a binary operation on A, we must show that it satisfies
Definition 4.4.26. To do this, take a, a′, b, b′ ∈ A, and prove:

∙ a = a′ and b = b′ implies a ∗ b = a′ ∗ b′,
∙ A is closed under ∗, that is a ∗ b ∈ A.

EXAMPLE 4.4.27

Define x ∗ y = 2x − y and take a, a′, b, b′ ∈ Z.
∙ Assume a = a′ and b = b′. Then,

a ∗ b = 2a − b = 2a′ − b′ = a′ ∗ b′.

The second equality holds because multiplication and subtraction are bi-
nary operations on Z.

∙ Because the product and difference of two integers is an integer, we have
that a ∗ b ∈ Z, so Z is closed under ∗.

Thus, ∗ is a binary operation on Z.

EXAMPLE 4.4.28

Let S = {e, a, b, c} and define ∗ by the following table:
∗ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

The table is read from left to right, so b ∗ c = a. The table makes ∗ into a binary
operation since every pair of elements of S is assigned a unique element of S.

EXAMPLE 4.4.29

Fix a set A. For any X, Y ∈ P(A), define X ∗ Y = X ∪ Y .
∙ Let X1, X2, Y1, Y2 ∈ P(A). If we assume that X1 = X2 and Y1 = Y2, wehave X1 ∪ Y1 = X2 ∪ Y2. Hence, ∗ is well-defined.
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∙ To show that P(A) is closed under ∗, let B and C be subsets of A. Then
B ∗ C = B ∪ C ∈ P(A) because B ∪ C ⊆ A [Exercise 3.3.10(a)].

This shows that ∗ is a binary operation on P(A). Notice that ∗ is a subset of
[P(A) × P(A)] × P(A).

EXAMPLE 4.4.30

Let m ∈ Z+ and define [a]m + [b]m = [a + b]m. We show that this is a binary
operation on Zm.

∙ Let a1, a2, b1, b2 ∈ Z. Suppose [a1]m = [a2]m and [b1]m = [b2]m. This
means that a1 = a2 + nk and b1 = b2 + nl for some k, l ∈ Z. Hence,
a1 + b1 = a2 + b2 + n(k + l), and we have [a1 + b1]m = [a2 + b2]m.

∙ For closure, let [a]m, [b]m ∈ Zm where a and b are integers. Then, we have
that [a]m + [b]m = [a + b]m ∈ Zm since a + b is an integer.

Many binary operations share similar properties with the operations of + and × on R.
The next definition gives four of these properties.

DEFINITION 4.4.31

Let ∗ be a binary operation on A.
∙ ∗ is associative means that (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ A.
∙ ∗ is commutative means that a ∗ b = b ∗ a for all a, b ∈ A.
∙ The element e is an identity of A with respect to ∗ when e ∈ A and e ∗
a = a ∗ e = a for all a ∈ A.

∙ Suppose that A has an identity e with respect to ∗ and let a ∈ A. The
element a′ ∈ A is an inverse of a with respect to ∗ if a ∗ a′ = a′ ∗ a = e.

Notice that the identity, if it exists, must be unique. To prove this, suppose that
both e and e′ are identities. These must be equal because e = e ∗ e′ = e′. So, if
a set has an identity with respect to an operation, we can refer to it as the identity of
the set. Similarly, we can write the inverse if it exists for associative binary operations
(Exercise 20).

EXAMPLE 4.4.32

We assume that + and × are both associative and commutative on C and all sub-
sets ofC, that 0 is the identity with respect to+ (the additive identity) and 1 is the
identity with respect to × (the multiplicative identity), and that every complex
number has an inverse with respect to + (an additive inverse) and every nonzero
complex number has an inverse with respect to × (amultiplicative inverse).
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EXAMPLE 4.4.33

The binary operation defined in Example 4.4.30 is both associative and commu-
tative. To see that it is commutative, let a, b ∈ Z. Then,

[a]m + [b]m = [a + b]m = [b + a]m = [b]m + [a]m, (4.6)
where the second equality holds because + is commutative on Z. Its identity is
[0]m [let b = 0 in (4.6)] and the additive inverse of [a]m is [−a]m.

EXAMPLE 4.4.34

Since A ∪ B = B ∪ A and (A ∪ B) ∪ C = A ∪ (B ∪ C) for all sets A, B, and C ,
the binary operation in Example 4.4.29 is both associative and commutative. Its
identity is ∅, and only ∅ has an inverse.

Exercises

1. Indicate whether each of the given relations are functions. If a relation is not a
function, find an element of its domain that is paired with two elements of its range.

(a) {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}
(b) {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)}
(c) {(x,

√

|x| : x ∈ R}
(d) {(x,±

√

|x|) : x ∈ R}
(e) {(x, x2) : x ∈ R}
(f) {([a]5, b) : ∃k ∈ Z(a = b + 5k)}
(g)  : Z → Z5 if  (a) = [a]5

2. Prove that the given relations are functions.
(a) {(x, 1∕x) : x ∈ R ⧵ {0}}
(b) {(x, x + 1) : x ∈ Z}
(c) {(x, |x|) : x ∈ R}
(d) {(x,

√

x) : x ∈ [0,∞)}
3. Let f = {(x, y) ∈ R2 : 2x + y = 1}. Show that f is a function with domain and
codomain equal to the set of real numbers.
4. Let f, g : R → R be functions. Prove that '(x, y) = (f (x), g(y)) is a function with
domain and codomain equal to R × R.
5. Let A be a set and define  (A) = P(A). Show that  is a function.
6. Define

f (x) =

{

x2 if x ≥ 0,
5 if x < 0.

Show that f is well-defined with domain equal to R. What is ran(f )?
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7. Let x be in the domain and y in the range of each relation. Explain why each of the
given equations does not describe a function.

(a) y = 5 ± x
(b) x2 + y2 = 1
(c) x = 4y2 − 1
(d) y2 − x2 = 9

8. Let ' : Z → Z7 be defined by '(a) = [a]7. Write the given images as rosters.
(a) '(0)
(b) '(7)
(c) '(3)
(d) '(−3)

9. Define '([a]n) = [a]m for all a ∈ Z. Is ' being function sufficient for m ∣ n?
Explain.
10. Give an example of a function that is an element of the given sets.

(a) RR
(b) RZ
(c) NR
(d) R[0,∞)
(e) Z(Z5)

11. Evaluate the indicated expressions.
(a) �4(f ) if f (x) = 9x + 2
(b) ��(g) if g(�) = sin �

12. Since functions are sets, we can perform set operations on them. Let f (x) = x2
and g(x) = −x. Find the following.

(a) f ∪ g
(b) f ∩ g
(c) f ⧵ g
(d) g ⧵ f

13. Let C be a chain of functions with respect to ⊆. Prove that⋃C is a function.
14. Let f and g be functions. Prove the following.

(a) If f and g are functions, f ∩ g is a function.
(b) f ∪ g is a function if and only if f (x) = g(x) for all x ∈ dom(f ) ∩ dom(g).

15. Let f : A → B be a function. Define a relation S on A by aS b if and only if
f (a) = f (b).

(a) Show S is an equivalence relation.
(b) Find [3]S if f : Z → Z is defined by f (n) = 2n.
(c) Find [2]S if f : Z → Z5 is given by f (n) = [n]5.

16. Show that ∅ is a function and find its domain and range.
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17. Define ∗ by x ∗ y = x + y + 2 for all x, y ∈ Z.
(a) Show that ∗ is a binary operation on Z.
(b) Prove that −2 is the identity of Z with respect to ∗.
(c) For every n ∈ Z, show that −n − 4 is the inverse of n with respect to ∗.

18. Define the binary operation ∗ by x ∗ y = 2x − y for all x, y ∈ Z.
(a) Is there an integer that serves as an identity with respect to ∗?
(b) Does every integer have an inverse with respect to ∗?

19. Let f, g : R → R be functions. Prove that f ◦ g is well-defined.
20. For an associative binary operation, prove that the inverse of an element is unique
if it exists. Show that this might not be the case if the binary operation is not associative.
21. Prove that the given pairs of functions are equal.

(a) f (x) = (x − 1)(x − 2)(x + 3) and g(x) = x3 − 7x + 6
where f, g : R → R

(b) '(a, b) = a + b and  (a, b) = b + a
where ', : Z × Z → Z

(c) '(a, b) = ([a]5, [b + 7]5) and  (a, b) = ([a + 5]5, [b − 3]5)where ', : Z × Z → Z5 × Z5
(d) '(f ) = f �Z and  (f ) = {(n, f (n)) : n ∈ Z}

where ', : RR → ZR

22. Show that the given pairs of functions are not equal.
(a) f (x) = x and g(x) = 2x where f, g : R → R
(b) f (x) = x − 3 and g(x) = x + 3 where f, g : R → R
(c) '(a) = [a]5 and  (a) = [a]4 where ', : Z → Z4 ∪ Z5
(d) '(A) = A ⧵ {0} and  (A) = A ∩ {1, 2, 3} where ', : P(Z)→ P(Z)

23. Let  : R → RR be defined by  (a) = fa where fa is the function fa : R → R
with fa(x) = ax. Prove that  is well-defined.
24. For each pair of functions, find the indicated values when possible.

(a) f : R → R and f (x) = 2x3
g : R → R and g(x) = x + 1
(f ◦ g)(2)
(g ◦ f )(0)

(b) f : [0,∞)→ R and f (x) =√

x
g : R → R and g(x) = |x| − 1
(f ◦ g)(0)
(g ◦ f )(4)

(c) ' : Z → Z5 and '(a) = [a]5
 : RR → R and  (f ) = f (0)
(' ◦  )(.5x + 1)
( ◦ ')(2)
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25. For each of the given functions, find the composition of the function with itself.
For example, find f ◦ f for part (a).

(a) f : R → R with f (x) = x2
(b) g : R → R with g(x) = 3x + 1
(c) ' : Z × Z → Z × Z with '(x, y) = (2y, 5x − y)
(d)  : Zm → Zm with  ([n]m) = [n + 2]m

26. Let ' : A→ B be a function and  = ' �C where C ⊆ A. Prove that if � : C → A
is defined by �(c) = c (known as the inclusion map), then  = ' ◦ �.
27. Write the given restrictions as rosters.

(a) {(1, 2), (2, 2), (3, 4), (4, 7)} � {1, 3}
(b) f � {0, 1, 2, 3} where f (x) = 7x − 1 and dom(f ) = R
(c) (g + ℎ) � {−3.3, 1.2, 7} where g(x) = ⟦x⟧, ℎ(x) = x + 1, and both dom(g)

and dom(ℎ) equal R
28. For functions f and g such that A,B ⊆ dom(f ), prove the following.

(a) f �A = f ∩ [A × ran(f )]
(b) f � (A ∩ B) = (f �A) ∩ (f �B)
(c) f � (A ⧵ B) = (f �A) ⧵ (f �B)
(d) (g ◦ f ) �A = g ◦ (f �A)

29. Let f : U → V be a function. Prove that if A ⊆ U , then f �A = f ◦ IA.
30. Let ' : AC → BC be defined by '(f ) = f �B. Prove that ' is well-defined.
31. A real-valued function f is periodic if there exists k > 0 so that f (x) = f (x+ k)
for all x ∈ dom(f ). Let g, ℎ : R → R be functions with period k. Prove that g ◦ ℎ is
periodic with period k.
32. Let (A,4) be a poset. A function ' : A→ A is increasingmeans for all x, y ∈ A,
if x ≺ y, then '(x) ≺ '(y). A decreasing function is defined similarly. Suppose that
� and � are increasing. Prove that � ◦ � is increasing.

4.5 INJECTIONS AND SURJECTIONS

When looking at relations, we studied the concept of an inverse relation. Given R, ob-
tainR−1 by exchanging the x- and y-coordinates. The same can be done with functions,
but the inverse might not be a function. For example, given

f = {(1, 2), (2, 3), (3, 2)},

its inverse is
f−1 = {(2, 1), (3, 2), (2, 3)}.

However, if the original relation is a function, we often want the inverse also to be a
function. This leads to the next definition.
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DEFINITION 4.5.1

' : A→ B is invertible means that '−1 is a function B → A.
An immediate consequence of the definition is the next result.

LEMMA 4.5.2

Let ' be invertible. Then, '(x) = y if and only if '−1(y) = x for all x ∈ dom(').
PROOF

Suppose that '(x) = y. This means that (x, y) ∈ ', so (y, x) ∈ '−1. Since
' is invertible, '−1 is a function, so write '−1(y) = x. The converse is proved
similarly.
We use Lemma 4.5.2 in the proof of the next theorem, which gives conditions for

when a function is invertible.
THEOREM 4.5.3

' : A→ B is invertible if and only if '−1 ◦ ' = IA and ' ◦ '−1 = IB .
PROOF

Take a function ' : A→ B. Then, '−1 ⊆ B × A.
∙ Assume that '−1 is a function B → A. Let x ∈ A and y ∈ B. By assump-
tion, we have x0 ∈ A and y0 ∈ B such that '(x) = y0 and '−1(y) = x0.This implies that '−1(y0) = x and '(x0) = y by Lemma 4.5.2. Therefore,

('−1 ◦ ')(x) = '−1('(x)) = '−1(y0) = x,

and
(' ◦ '−1)(y) = '('−1(y)) = '(x0) = y.

∙ Now assume '−1 ◦ ' = IA and ' ◦ '−1 = IB . To show that '−1 is a
function, take (y, x), (y, x′) ∈ '−1. From this, we know that (x, y) ∈ '.
Therefore,

(x, x′) ∈ '−1 ◦ ' = IA,

so x = x′. In addition, we know that dom('−1) ⊆ B, so to prove equality,
let y ∈ B. Then,

(y, y) ∈ IB = ' ◦ '−1.

Thus, there exists x ∈ A such that (y, x) ∈ '−1, so y ∈ dom('−1).

EXAMPLE 4.5.4

∙ Let f : R → R be the function given by f (x) = x+2. Its inverse is g(x) = x−2
by Theorem 4.5.3. This is because

(g ◦ f )(x) = g(x + 2) = (x + 2) − 2 = x
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and
(f ◦ g)(x) = f (x − 2) = (x − 2) + 2 = x.

∙ If the function g : [0,∞) → [0,∞) is defined by g(x) = x2, then g−1 is a
function [0,∞)→ [0,∞) and is defined by g−1(x) =√

x.
∙ Let ℎ : R → (0,∞) be defined as ℎ(x) = ex. By Theorem 4.5.3, we know that
ℎ−1(x) = ln x because eln x = x for all x ∈ [0,∞) and ln ex = x for all x ∈ R.

Injections

Theorem 4.5.3 can be improved by finding a condition for the invertibility of a function
based only on the given function. Consider the following. In order for a relation to be a
function, it cannot look like Figure 4.9. Since the inverse exchanges the roles of the two
coordinates, in order for an inverse to be a function, the original function cannot look
like the graph in Figure 4.11. In other words, if f−1 is to be a function, there cannot
exist x1 and x2 so that x1 ≠ x2 and f (x1) = f (x2). But then,

¬∃x1∃x2[x1 ≠ x2 ∧ f (x1) = f (x2)]

is equivalent to
∀x1∀x2[x1 = x2 ∨ f (x1) ≠ f (x2)],

which in turn is equivalent to
∀x1∀x2[f (x1) = f (x2)→ x1 = x2].

Hence, f being an invertible function implies that for every x1, x2 ∈ dom(f ),
x1 = x2 if and only if f (x1) = f (x2). (4.7)

(x
y

(x     21 , y)   , y)   

f

 x     2 x     1

Figure 4.11 The inverse of a function might not be a function.
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A B𝜑

Figure 4.12 ' is a one-to-one function.

This means that the elements of the domain of f and the elements of the range of f form
pairs of elements as illustrated in Figure 4.12. The sufficiency of (4.7) is the definition
of a function, while necessity is the next definition.

DEFINITION 4.5.5

The function ' : A→ B is one-to-one if and only if for all x1, x2 ∈ A,
if '(x1) = '(x2), then x1 = x2.

A one-to-one function is sometimes called an injection.

EXAMPLE 4.5.6

Define f : R → R by f (x) = 5x+1. To show that f is one-to-one, let x1, x2 ∈ R
and assume f (x1) = f (x2). Then,

5x1 + 1 = 5x2 + 1,
5x1 = 5x2,
x1 = x2.

EXAMPLE 4.5.7

Let ' : Z × Z → Z × Z × Z be the function
'(a, b) = (a, b, 0).

For any (a1, b1), (a2, b2) ∈ Z × Z, assume
'(a1, b1) = '(a2, b2).

This means that
(a1, b1, 0) = (a2, b2, 0).

Hence, a1 = a2 and b1 = b2, and this yields (a1, b1) = (a2, b2).
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A B𝜑

Figure 4.13 ' is not a one-to-one function.

If a function is not one-to-one, there must be an element of the range that has at
least two pre-images (Figure 4.13). An example of a function that is not one-to-one is
f (x) = x2 where both the domain and codomain of f are R. This is because f (2) = 4
and f (−2) = 4. Another example is g : R → R defined by g(�) = cos �. It is not an
injection because g(0) = g(2�) = 1.

Although the original function might not be one-to-one, we can always restrict the
function to a subset of its domain so that the resulting function is one-to-one. This is
illustrated in the next two examples.

EXAMPLE 4.5.8

Let f be the function {(1, 5), (2, 8), (3, 8), (4, 6)}.We observe that f is not one-
to-one, but both

f � {1, 2} = {(1, 5), (2, 8)}

and
f � {3, 4} = {(3, 8), (4, 6)}

are one-to-one as in Figure 4.14.

A

B

f   A  
1

6

5

4

3

2
8

↾

f   B↾

Figure 4.14 Restrictions of f to A and B are one-to-one.
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EXAMPLE 4.5.9

Let g : R → R be the function g(x) = x2. This function is not one-to-one, but
g � [0,∞) and g � (−10,−5) are one-to-one.

Let f (x) = 3x + 6 and g(x) =√

5x − 8. Both are injections. Notice that
(f ◦ g)(x) = 3

√

5x − 8 + 6

and
(g ◦ f )(x) =

√

15x + 22

are also injections. We can generalize this result to the next theorem.
THEOREM 4.5.10

If ' : A→ B and  : B → C are injections,  ◦ ' is an injection.
PROOF

Assume that ' : A → B and  : B → C are one-to-one. Let a1, a2 ∈ A and
assume ( ◦ ')(a1) = ( ◦ ')(a2). Then,

 ('(a1)) =  ('(a2)).

Since  is one-to-one,
'(a1) = '(a2),

and since ' is one-to-one, a1 = a2.

Surjections

The function being an injection is not sufficient for it to be invertible since it is pos-
sible that not every element of the codomain will have a pre-image. In this case, the
codomain cannot be the domain of the inverse. To prevent this situation, we will need
the function to satisfy the next definition.

DEFINITION 4.5.11

A function ' : A → B is onto if and only if for every y ∈ B, there exists x ∈ A
such that '(x) = y. An onto function is also called a surjection.

This definition is related to the range (or image) of the function. The range of the
function ' : A→ B is

ran(') = {y : ∃x(x ∈ A ∧ (x, y) ∈ ')} = {'(x) : x ∈ dom(')}
as illustrated in Figure 4.15. Thus, ' is onto if and only if ran(') = B.

EXAMPLE 4.5.12

Define f : [0,∞)→ [0,∞) by f (x) =√

x. Its range is also [0,∞), so it is onto.
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A B

𝜑

ran(   )𝜑

yx

Figure 4.15 The range of ' : A → B with y = '(x).

EXAMPLE 4.5.13

The ranges of the following functions are different from their codomains, so they
are not onto.

∙ Let g : R → R be defined by g(x) = |x|. Then, ran(g) = [0,∞).
∙ Define ℎ : Z → Z by ℎ(n) = 2n. Here, ran(ℎ) = {2n : n ∈ Z}.

The functions illustrated in Figures 4.12, 4.13, and 4.14 are onto functions as are
those in the next examples.

EXAMPLE 4.5.14

Any linear function f : R → R that is not a horizontal line is a surjection. To
see this, let f (x) = ax + b for some a ≠ 0. Take y ∈ R. We need to find x ∈ R
so that ax + b = y. Choose

x =
y − b
a

.

Then,
f (x) = a

(

y − b
a

)

+ b = y.

The approach in the example is typical. To show that a function is onto, take an
arbitrary element of the codomain and search for a candidate to serve as its pre-image.
When found, check it.

EXAMPLE 4.5.15

Take a positive integer m and let ' : Z → Zm be defined as '(k) = [k]m. To see
that ' is onto, take [l]m ∈ Zm for some l ∈ Z. We then find that '(l) = [l]m.

EXAMPLE 4.5.16

Let m, n ∈ N with m > n. A function � : Rm → Rn defined by
�(x0, x1,… , xn−1, xn,… , xm−1) = (x0, x1,… , xn−1)
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is called a projection.. Such functions are not one-to-one, but they are onto. For
instance, define � : R × R × R → R × R by

�(x, y, z) = (x, y).

It is not one-to-one because �(1, 2, 3) = �(1, 2, 4) = (1, 2). However, if we take
(a, b) ∈ R × R, then �(a, b, 0) = (a, b), so � is onto.
If a function is not onto, it has a diagram like that of Figure 4.16. Therefore, to show

that a function is not a surjection, we must find an element of the codomain that does
not have a pre-image.

EXAMPLE 4.5.17

Define f : Z → Z by f (n) = 3n. This function is not onto because 5 does not
have a pre-image in Z.

EXAMPLE 4.5.18

The function
' : Z × Z → Z × Z × Z

defined by '(a, b) = (a, b, 0) is not onto because (1, 1, 1) does not have a pre-
image in Z × Z.

We have the following analog of Theorem 4.5.10 for surjections.
THEOREM 4.5.19

If ' : A→ B and  : B → C are surjections,  ◦ ' is a surjection.
PROOF

Assume that ' : A → B and  : B → C are surjections. Take c ∈ C . Then,
there exists b ∈ B so that  (b) = c and a ∈ A such that '(a) = b. Therefore,

( ◦ ')(a) =  ('(a)) =  (b) = c.

A B𝜑

Figure 4.16 ' is not a onto function.
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Bijections

If we have a function that is both one-to-one and onto, then it is called a bijection or a
one-to-one correspondence. Observe that ∅ is a bijection.

EXAMPLE 4.5.20

As illustrated in Examples 4.5.6 and 4.5.14, every linear f : R → Rwith nonzero
slope is a bijection.

EXAMPLE 4.5.21

Both g : (−�∕2, �∕2) → R such that g(�) = tan � and ℎ : R → (0,∞) where
ℎ(x) = ex are bijections.
We are now ready to give the standard test for invertibility. Its proof requires both

Lemma 4.5.2 and Theorem 4.5.3. The benefit of this theorem is that it provides a test
for invertibility in which the given function is examined instead of its inverse.

THEOREM 4.5.22

A function is invertible if and only if it is a bijection.
PROOF

Let ' : A→ B be a function.
∙ Suppose that ' is invertible. To show that ' is one-to-one, let x1, x2 ∈ Aand assume that '(x1) = '(x2). Then, by Theorem 4.5.3,

x1 = '−1('(x1)) = '−1('(x2)) = x2.

To see that ' is onto, take y ∈ B. Then, there exists x ∈ A such that
'−1(y) = x. Hence, '(x) = y by Lemma 4.5.2.

∙ Assume that' is both one-to-one and onto. To show that'−1 is a function,
let (y, x), (y, x′) ∈ '−1. This implies that '(x) = y = '(x′). Since ' is
one-to-one, x = x′. To prove that the domain of '−1 is B, take y ∈ B.
Since ' is onto, there exists x ∈ A such that '(x) = y. By Lemma 4.5.2,
we have that '−1(y) = x, so y ∈ dom('−1).

By Theorem 4.5.22 the functions of Examples 4.5.20 and 4.5.21 are invertible.
THEOREM 4.5.23

If ' : A→ B and  : B → C are bijections, then '−1 and  ◦ ' are bijections.
PROOF

Suppose ' is a bijection. By Theorem 4.5.22, it is invertible, so '−1 is a function
that has ' as its inverse. Therefore, '−1 is a bijection by Theorem 4.5.22. Com-
bining the proofs of Theorems 4.5.10 and 4.5.19 show that  ◦ ' is a bijection
when  is a bijection.
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Using the functions g and ℎ from Example 4.5.21, we conclude from Theorem 4.5.23
that ℎ ◦ g is a bijection with domain (−�∕2, �∕2) and range (0,∞).

Order Isomorphims

Consider the function
' : Z × {0} → {0} × Z (4.8)

defined by'(m, 0) = (0, m). It can be shown that' is a bijection (compare Exercise 12).
Define the linear orders 4 on Z × {0} and 4′ on {0} × Z by

(m, 0) 4 (n, 0) if and only if m ≤ n

and
(0, m) 4′ (0, n) if and only if m ≤ n.

Notice that (3, 0) 4 (5, 0) and (0, 3) 4′ (0, 5) because 3 ≤ 5. We can generalize this to
conclude that

(m, 0) 4 (n, 0) if and only if (0, m) 4′ (0, n),
and this implies that

(m, 0) 4 (n, 0) if and only if '(m, 0) 4′ '(n, 0).
This leads to the next definition.

DEFINITION 4.5.24

Let R be a relation on A and S be a relation on B.
∙ ' : A→ B is an order-preserving function if for all a1, a2 ∈ A,

(a1, a2) ∈ R if and only if ('(a1), '(a2)) ∈ S

and we say that ' preserves R with S.
∙ An order-preserving bijection is an order isomorphism.
∙ (A,R) is order isomorphic to (B,S) and we write (A,R) ≅ (B,S) if
there exists an order isomorphism ' : A → B preserving R with S. If
(A,R) ≅ (B,S) and the relations R and S are clear from context, we can
writeA ≅ B. Sometimes (A,R) and (B,S) are said to have the same order
type when they are order isomorphic.

An isomorphism pairs elements from two sets in such a way that the orders on the two
sets appear to be the same.
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EXAMPLE 4.5.25

Define f : R+ → R− by f (x) = −x (Example 3.1.12). Clearly, f is a bijection.
Moreover, f preserves ≤ with ≥. To prove this, let x1, x2 ∈ R+. Then,

x1 ≤ x1 ⇔ −x1 ≥ −x2 ⇔ f (x1) ≥ f (x2).

Therefore, (R+,≤) ≅ (R−,≥).
Observe that the inverse of (4.8) is the function

'−1 : {0} × Z → Z × {0}

such that '−1(0, m) = (m, 0). This function preserves 4′ with 4. This result is gener-
alized and proved in the next theorem.

THEOREM 4.5.26

The inverse of an order isomorphism preserving R with S is an order isomor-
phism preserving S with R.

PROOF
Let ' : A → B be an order isomorphism preserving R with S. By Theo-
rem 4.5.23, '−1 is a bijection. Suppose that (b1, b2) ∈ S. Since ' is onto,
there exists a1, a2 ∈ A such that '(a1) = b1 and '(a2) = b2. This implies
that ('(a1), '(a2)) ∈ S. Since ' is an isomorphism preserving R with S,
we have that (a1, a2) ∈ R. However, a1 = '−1(b1) and a2 = '−1(b2), so
('−1(b1), '−1(b2)) ∈ R. Therefore, '−1 : B → A is an isomorphism preserving
S with R.

Also, observe that g : R → (0,∞) defined by g(x) = ex is an order isomorphism
preserving ≤ with ≤. Using f from Example 4.5.25, the composition f ◦ g is an order
isomorphism R → (−∞, 0) such that (f ◦ g)(x) = −ex. That this happens in general is
the next theorem. Its proof is left to Exercise 25.

THEOREM 4.5.27

If ' : A → B is an isomorphism preserving R with S and  : B → C is an
isomorphism preserving S with T , then  ◦ ' : A → C is an isomorphism
preserving R with T .

EXAMPLE 4.5.28

Let R be a relation on A, S be a relation on B, and T be a relation on C .
∙ Since the identity map is an order isomorphism, (A,R) ≅ (A,R).
∙ Suppose (A,R) ≅ (B,S). This means that there exists an order isomor-
phism ' : A → B preserving R with S. By Theorem 4.5.26, '−1 is an
order isomorphism preserving S with R. Therefore, (B,S) ≅ (A,R).
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∙ Let (A,R) ≅ (B,S) and (B,S) ≅ (C, T ). By Theorem 4.5.27, we conclude
that (A,R) ≅ (C, T ).

If an order-preserving function is one-to-one, even it is not a surjection, the function
still provides an order isomorphism between its domain and range. This concept is
named by the next definition.

DEFINITION 4.5.29

' : A→ B is an embedding if ' is an order isomorphism A→ ran(').
For example, f : Z → Q such that f (n) = n is an embedding preserving ≤ and
� : R2 → R3 such that  (x, y) = (x, y, 0) is an embedding preserving the lexicograph-
ical order (Exercise 4.3.16). Although R2 is not a subset of R3, we view the image of
 as a copy of R2 in R3 that preserves the orders.
Exercises

1. Show that the given pairs of functions are inverses.
(a) f (x) = 3x + 2 and g(x) = 1

3x −
2
3

(b) '(a, b) = (2a, b + 2) and  (a, b) = ( 12a, b − 2)(c) f (x) = ax and g(x) = loga x, where a > 0
2. For each function, graph the indicated restriction.

(a) f � (0,∞), f (x) = x2
(b) g � [−5,−2], g(x) = |x|
(c) ℎ �

[

0, �∕2
], ℎ(x) = cos x

3. Prove that the given functions are one-to-one.
(a) f : R → R, f (x) = 2x + 1
(b) g : R2 → R2, g(x, y) = (3y, 2x)
(c) ℎ : R ⧵ {9}→ R ⧵ {0}, ℎ(x) = 1∕(x − 9)
(d) ' : Z × R → Z × (0,∞), '(n, x) = (3n, ex)
(e)  : P(A)→ P(B),  (C) = C ∪ {b} where A ⊂ B and b ∈ B ⧵ A

4. Let f : (a, b)→ (c, d) be defined by

f (x) = d − c
b − a

(x − a) + c.

Graph f and show that it is a bijection.
5. Let f and g be functions such that ran(g) ⊆ dom(f ).

(a) Prove that if f ◦ g is one-to-one, g is one-to-one.
(b) Give an example of functions f and g such that f ◦ g is one-to-one, but f is

not one-to-one.
6. Define ' : Z → Zm by '(k) = [k]m. Show that ' is not one-to-one.
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7. Show that the given functions are not one-to-one.
(a) f : R → R, f (x) = x4 + 3
(b) g : R → R, g(x) = |x − 2| + 4
(c) ' : P(A)→ {{a},∅}, '(B) = B ∩ {a}, where a ∈ A and A has at least two

elements
(d) �5 : RR → R, �5(f ) = f (5)

8. Let f : R → R be periodic (Exercise 4.4.31). Prove that f is not one-to-one.
9. Show that the given functions are onto.

(a) f : R → R, f (x) = 2x + 1
(b) g : R → (0,∞), g(x) = ex
(c) ℎ : R ⧵ {0}→ R ⧵ {0}, ℎ(x) = 1∕x
(d) ' : Z × Z → Z, '(a, b) = a + b
(e) �5 : RR → R, �5(f ) = f (5)

10. Show that the given functions are not onto.
(a) f : R → R, f (x) = ex
(b) g : R → R, g(x) = |x|
(c) ' : Z × Z → Z × Z, '(a, b) = (3a, b2)
(d)  : R → RR,  (a) = f , where f (x) = a for all x ∈ R

11. Let f and g be functions such that ran(g) ⊆ dom(f ).
(a) Prove that if f ◦ g is onto, then f is onto.
(b) Give an example of functions f and g such that f ◦ g is onto, but g is not

onto.
12. Define ' : Q × Z → Z ×Q by '(x, y) = (y, x). Show that ' is a bijection.
13. Show that the function  : A × B → C ×D defined by

(a, b) = ('(a),  (b))

is a bijection if both ' : A→ C and  : B → D are bijections.
14. Define  : A × (B × C)→ (A × B) × C by

(a, (b, c)) = ((a, b), c).

Prove  is a bijection.
15. Demonstrate that the inverse of a bijection is a bijection.
16. Prove that the empty set is a bijection with domain and range equal to ∅.
17. Let A ⊆ R and define ' : RR → AR by '(f ) = f �A. Is ' always one-to-one? Is
it always onto? Explain.
18. A function f : A→ B has a left inverse if there exists a function g : B → A such
that g ◦ f = IA. Prove that a function is one-to-one if and only if it has a left inverse.
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19. A function f : A→ B has a right inverse if there exists a function g : B → A so
that f ◦ g = IB . Prove a function is onto if and only if it has a right inverse.
20. Let (A,4) be a poset. For every bijection ' : A → A, ' is increasing (Exer-
cise 4.4.32) if and only if '−1 is increasing.
21. Show that if a real-valued function is increasing, it is one-to-one.
22. Prove or show false this modification of Theorem 4.5.23: If ' : A → B and
 : C → D are bijections with ran(') ⊆ C , then  ◦ ' is a bijection.
23. Let A,B ⊆ R be two sets ordered by ≤. Let A be well-ordered by ≤. Prove that if
f : A→ B is an order-preserving surjection, B is well-ordered by ≤.
24. Let ' : A→ B be an isomorphism preserving R with R′. Let C ⊆ A and D ⊆ B.
Prove the following.

(a) (C,R ∩ [C × C]) ≅ (' [C] , R′ ∩ [' [C] × ' [C]])
(b) (D,R′ ∩ [D ×D]) ≅ ('−1 [D] , R ∩ ['−1 [D] × '−1 [D]])

25. Prove Theorem 4.5.27.
26. Define f : R → R by f (x) = 2x + 1. Prove that f is an order isomorphism
preserving < with <.
27. Suppose that (A,R) and (B,S) are posets. Let ' : A → B be an order isomor-
phism preserving R with S and C ⊆ A. Prove that if m is the least element of C with
respect to R, then '(m) is the least element of ' [C] with respect to S.
28. Find linear orders (A,4) and (B,4′) such that each is isomorphic to a subset of
the other but (A,4) is not isomorphic to (B,4′).
29. Let (A,4) be a poset. Prove that there exists B ⊆ P(A) such that (A,4) ≅ (B,⊆).

4.6 IMAGES AND INVERSE IMAGES

So far we have focused on the image of single element in the domain of a function.
Sometimes we will need to examine a set of images.

DEFINITION 4.6.1

Let ' : A→ B be a function and C ⊆ A. The image of C (under ') is
' [C] = {'(x) : x ∈ C}.

Notice that ' [C] ⊆ B (Figure 4.17) and ' [A] = ran(').
A similar definition can be made with subsets of the codomain.
DEFINITION 4.6.2

Let ' : A→ B be a function and D ⊆ B. The inverse image of D (under ') is
'−1 [D] = {x ∈ A : '(x) ∈ D}.
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A B

𝜑[C]

yx

C

𝜑

Figure 4.17 The image of C under '.

A B

𝜑    [D]

yx

D

𝜑

−1

Figure 4.18 The inverse image of D under '.

Observe that '−1 [D] ⊆ A (Figure 4.18) and '−1 [ran(')] = A.
EXAMPLE 4.6.3

Let f = {(1, 2), (2, 4), (3, 5), (4, 5)}. This set is a function. Its domain is {1, 2, 3, 4},
and its range is {2, 4, 5}. Then,

f [{1, 3}] = {2, 5}

and
f−1 [{5}] = {3, 4}.

EXAMPLE 4.6.4

Define f : R → R by f (x) = x2 + 1.
∙ To prove f [(1, 2)] = (2, 5), we show both inclusions. Let y ∈ f [(1, 2)].
Then, y = x2 + 1 for some x ∈ (1, 2). By a little algebra, we see that
2 < x2 + 1 < 5. Hence, y ∈ (2, 5). Conversely, let y ∈ (2, 5). Because

2 < y < 5⇔ 1 < y − 1 < 4⇔ 1 <
√

y − 1 < 2,
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(a) f [(1, 2)] = (2, 5) (b) f−1[(2, 5)] = (−2,−1) ∪ (1, 2)

Figure 4.19 The image and inverse image of a set under f .

√

y − 1 ∈ (1, 2). Furthermore,
f (
√

y − 1) = f (
√

y − 1) = (
√

y − 1)2 + 1 = y.

Therefore, y ∈ f [(1, 2)]. This is illustrated in Figure 4.19(a).
∙ Simply because f [(1, 2)] = (2, 5), we cannot conclude f−1 [(2, 5)] equals
(1, 2). Instead, f−1 [(2, 5)] = (−2,−1) ∪ (1, 2), as seen in Figure 4.19(b),
because

x ∈ (−2,−1) ∪ (1, 2)⇔ −2 < x < −1 or 1 < x < 2
⇔ 1 < x2 < 4

⇔ 2 < x2 + 1 < 5
⇔ f (x) ∈ (2, 5)

⇔ x ∈ f−1 [(2, 5)] .

∙ To show that f−1 [(−2,−1)] is empty, take x ∈ f−1 [(−2,−1)]. This
means that −2 < f (x) < −1, but this is impossible because f (x) is posi-
tive.

Let f = {(1, 3), (2, 3), (3, 4), (4, 5)}. This is a function {1, 2, 3, 4} → {3, 4, 5}.
Notice that

f [{1} ∪ {2, 3}] = {3, 4} = f [{1}] ∪ f [{2, 3}],

f [{1, 2} ∩ {3}] = f [∅] = ∅ ⊆ {3} = f [{1}] ∩ f [{2, 3}],

f−1[{3, 4} ∪ {5}] = {1, 2, 3, 4} = f−1[{3, 4}] ∪ f−1[{5}],
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and
f−1[{3, 4} ∩ {5}] = ∅ = f−1[{3, 4}] ∩ f−1[{5}].

This result concerning the interaction of images and inverse images with union and
intersection is generalized in the next theorem.

THEOREM 4.6.5

Let ' : A→ B be a function with C,D ⊆ A and E, F ⊆ B.
∙ ' [C ∪D] = ' [C] ∪ ' [D].
∙ ' [C ∩D] ⊆ ' [C] ∩ ' [D].
∙ '−1 [E ∪ F ] = '−1 [E] ∪ '−1 [F ].
∙ '−1 [E ∩ F ] = '−1 [E] ∩ '−1 [F ].

PROOF
We prove the first and third parts, leaving the others for Exercise 7. By Exer-
cise 3.2.8(d),

y ∈ ' [C ∪D]⇔ ∃x(x ∈ C ∪D ∧ '(x) = y)
⇔ ∃x(x ∈ C ∧ '(x) = y) ∨ ∃x(x ∈ D ∧ '(x) = y)
⇔ y ∈ ' [C] ∨ y ∈ ' [D]
⇔ y ∈ ' [C] ∪ ' [D] .

In addition,
x ∈ '−1 [E ∪ F ]⇔ '(x) ∈ E ∪ F

⇔ '(x) ∈ E ∨ '(x) ∈ F

⇔ x ∈ '−1 [E] ∨ x ∈ '−1 [F ]

⇔ x ∈ '−1 [E] ∪ '−1 [F ] .

It might seem surprising that we only have an inclusion in the second part of Theo-
rem 4.6.5. To see that the other inclusion is false, let f = {(1, 3), (2, 3)}. Then,

f [{1} ∩ {2}] = f [∅] = ∅,

but
f [{1}] ∩ f [{2}] = {3} ∩ {3} = {3}.

Hence, f [{1}] ∩ f [{2}] * f [{1} ∩ {2}]. However, if f had been a bijection, the
inclusion would hold (Exercise 13).



220 Chapter 4 RELATIONS AND FUNCTIONS

EXAMPLE 4.6.6

Let f (x) = x2 + 1. We check the union results of Theorem 4.6.5.
∙ We have already seen in Example 4.6.4 that f [(1, 2)] = (2, 5). Since
(1, 2) = (1, 1.5] ∪ [1.5, 2), apply f to both of these intervals and find that

f [(1, 1.5]] = (2, 3.25],
f [[1.5, 2)] = [3.25, 5).

Therefore, f [(1, 2)] = f [(1, 1.5]] ∪ f [[1.5, 2)].
∙ Also, from Example 4.6.4, f−1[(2, 5)] = (−2,−1) ∪ (1, 2). We can write
(2, 5) as the union of (2, 4) and (3, 5). Since

f−1[(2, 4)] =
(

−
√

3,−1
)

∪
(

1,
√

3
)

,

f−1[(3, 5)] =
(

−2,−
√

2
)

∪
(
√

2, 2
)

,

we have that
f−1[(2, 5)] = f−1[(2, 4)] ∪ f−1[(3, 5)].

Theorem 4.6.5 can be modified to arbitrary unions and intersections. The proof is
left to Excercise 17.

THEOREM 4.6.7

Let {Ai : i ∈ I} be a family of sets.

∙ '
[

⋃

i∈I
Ai
]

=
⋃

i∈I
'[Ai]

∙ '
[

⋂

i∈I
Ai
]

⊆
⋂

i∈I
'[Ai]

∙ '−1
[

⋃

i∈I
Ai
]

=
⋃

i∈I
'−1[Ai]

∙ '−1
[

⋂

i∈I
Ai
]

=
⋂

i∈I
'−1[Ai].

We know that the composition of a function and its inverse equals the identity map
(Theorem 4.5.3). The last two results of the section show a similar result involving the
image and inverse image using functions that are either one-to-one or onto.
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THEOREM 4.6.8

Let ' : A→ B be a function. Suppose C ⊆ A and D ⊆ B.
∙ If ' is one-to-one, then '−1['[C]] = C .
∙ If ' is onto, then '['−1[D]] = D.

PROOF
We prove the first part and leave the second to Exercise 8. Suppose that ' is an
injection. We show that '−1 [' [C]] = C .

∙ Let x ∈ '−1['[C]]. This means that there exists y ∈ '[C] such that
'(x) = y. Furthermore, there is a z ∈ C so that '(z) = y. Therefore, since
' is one-to-one, x = z, which means that x ∈ C .

∙ This step will work for any function. Take x ∈ C , so '(x) ∈ '[C]. By
definition,

'−1['[C]] = {z ∈ A : '(z) ∈ '[C]}.
Since x is also an element of A, we conclude that x ∈ '−1['[C]].

Because we used the one-to-one condition only to prove'−1['[C]] ⊆ C , we suspect
that this inclusion is false if the function is not one-to-one. To see this, let f : R → R
be defined as f (x) = x2. We know that f is not one-to-one. Choose C = {1}. Then,

f−1[f [C]] = f−1[{1}] = {−1, 1}.

Therefore, f−1[f [C]] * C .
When examining the example, we might conjecture that the function being one-to-

one is necessary for equality. That this is the case is the following theorem.
THEOREM 4.6.9

Let ' : A→ B be a function.
∙ If '−1 [' [C]] = C for all C ⊆ A, then ' is one-to-one.
∙ If ' [

'−1 [D]
]

= D for all D ⊆ B, then ' is onto.
PROOF

As with the previous theorem, we prove only the first part. The second part is
Exercise 8. Assume

'−1['[C]] = C for all C ⊆ A.

Take x1, x2 ∈ A and let '(x1) = '(x2). Now,
{x1} = '−1['[{x1}]] = {z ∈ A : '(z) = '(x1)}.

Because '(x1) = '(x2), we have that {x1, x2} ⊆ {z ∈ A : '(z) = '(x1)}, sowe must have x1 = x2.
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Exercises

1. Let f : R → R be defined by f (x) = 2x + 1. Find the images and inverse images.
(a) f [(1, 3]]
(b) f [(−∞, 0)]
(c) f−1[(−1, 1)]
(d) f−1[(0, 2) ∪ (5, 8)]

2. Let g : R → R be the function g(x) = x4 − 1. Find the images and inverse images.
(a) g[{0}]
(b) g[Z]
(c) g−1[{0, 15}]
(d) g−1[[−9,−5] ∪ [0, 5]]

3. Define ' : R×R → Z by '(a, b) = ⟦a⟧+⟦b⟧. Find the images and inverse images.
(a) '[{0} × R]
(b) '[(0, 1) × (0, 1)]
(c) '−1[{2, 4}]
(d) '−1[N]

4. Let  : Z → Z be a function and define  : P(Z)→ P(Z) by (C) =  [C].
(a) Prove that  is well-defined.
(b) Let  (n) = 2n. Find [{1, 2, 3}], [Z], −1[{1, 2, 3}], and −1[Z].
(c) Under what conditions is  one-to-one?
(d) Under what conditions is  onto?

5. For any function  , show that  [∅] = ∅ and  −1[∅] = ∅.
6. Prove for every B ⊆ A, IA[B] = B and (IA)−1[B] = B.
7. Prove the remaining parts of Theorem 4.6.5.
8. Prove the unproven parts of Theorems 4.6.8 and 4.6.9.
9. Let ' : A→ B be an injection and C ⊆ A.

(a) Prove '(x) ∈ '[C] if and only if x ∈ C .
(b) Show that Exercise 9(a) is false if the function is not one-to-one.

10. If  is a function, A ⊆ B ⊆ dom( ), and C ⊆ D ⊆ ran( ), show that both
 [A] ⊆  [B] and  −1[C] ⊆  −1[D].
11. Let ' : A→ B be a function and take disjoint sets U and V .

(a) Prove false: If U, V ⊆ A, then '[U ] ∩ '[V ] = ∅.
(b) Prove false: If U, V ⊆ B, then '−1[U ] ∩ '−1[V ] = ∅.
(c) What additional assumption is needed to prove both of the implications?

12. Assume that ' and  are functions such that ran( ) ⊆ dom('). Let A be a subset
of dom( ). Prove or show false with a counterexample: (' ◦  )[A] = '[ [A]].
13. Let ' : A→ B be one-to-one. Prove the following.
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(a) '[A] ∩ '[B] ⊆ '[A ∩ B].
(b) If C ⊆ A and D ⊆ B, then '[C] = D if and only if '−1[D] = C .

14. Prove that if ' : A→ B is a bijection and C ⊆ A, then '[A ⧵ C] = B ⧵ '[C].
15. Find a function ' : A→ B and a set D ⊆ B such that D * '['−1[D]].
16. Let  be an injection with A ⊆ dom( ) and B ⊆ ran( ). Prove that

B ⊆  [A] if and only if  −1[B] ⊆ A.

17. Prove Theorem 4.6.7.





CHAPTER 5

AXIOMATIC SET THEORY

5.1 AXIOMS

When we began studying set theory in Chapter 3, we made several assumptions re-
garding which things are sets. For example, we assumed that collections of numbers,
like N, R, or (0,∞) are sets. We supposed that operating with given sets to form new
collections, as with union or intersection, resulted in sets. We also assumed that for-
mulas could be used to describe certain sets. All of this seemed perfectly reasonable,
but since all of these assumptions were made without a carefully thought-out system,
we would be wise to pause and investigate if we have introduced any problems.

Consider the following question. Given a formula p(x), is there a set of the form
{x : p(x)}? Consistent with the attitude of our previous work, we might quickly answer
in the affirmative. Mathematicians, including Cantor, also initially thought that this was
the case. However, it was shown independently by Bertrand Russell and Ernst Zermelo
that not every formula can be used to define a set. For example, let p(x) := x ∉ x and
A = {x : p(x)} and consider whether A is an element of itself. If A ∈ A, then due
to the definition of p(x), A ∉ A, and if A ∉ A, then A ∈ A. Because of this built-in
contradiction, it is impossible for A to be a set. This is known as Russell’s paradox,
and it was a serious challenge to set theory. One solution would have been to dismiss
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226 Chapter 5 AXIOMATIC SET THEORY

set theory altogether. The problem was that this new subject combined with advances
in logic appeared to promise a framework in which to study foundational questions of
mathematics. David Hilbert famously supported set theory by remarking that “no one
will drive us out of this paradise that Cantor has created for us,” so dismissal was not
an option. In order to prevent contradictions such as Russell’s paradox from appearing,
mathematicians settled on the method of Euclid as the solution, but instead of assuming
geometric postulates, over a period of time, certain set-theoretic axioms were chosen.
Their purpose was to define a system by which one could determine whether a given
collection should be considered a set in such amanner that prevented any contradictions
from arising. In this chapter we identify the axioms and then redefine N, R, and other
collections so that we are confident in our previous assumptions regarding them being
sets.

Equality Axioms

We begin with the basics. Although not officially among the set axioms, = is always
assumed to satisfy the following rules. They are defined to replicate the standard rea-
soning of equality that we have been using in previous chapters.

AXIOMS 5.1.1 [Equality]

Let x, y, and z be variable symbols from theory symbols S.
∙ [E1] x = x.
∙ [E2] x = y⇔ y = x.
∙ [E3] x = y, y = z⇒ x = z.

Let x0, x1,… , xn−1 and y0, y1,… , yn−1 be variable symbols from S.
∙ [E4] For any n-ary function symbol f of S,

x0 = y0 ∧ x1 = y1 ∧ · · · ∧ xn−1 = yn−1
⇒ f (x0, x1,… , xn−1) = f (y0, y1,… , yn−1).

∙ [E5] For any S-formula p(u0, u1,… , un−1),

x0 = y0 ∧ x1 = y1 ∧ · · · ∧ xn−1 = yn−1
⇒ p(x0, x1,… , xn−1)↔ p(y0, y1,… , yn−1).

AxiomsE1,E2, andE3 give= the behavior of an equivalence relation (Definition 4.2.4).
For example, we can use E2 to prove that for any constant symbols c0 and c1,

⊢ c0 = c1 ↔ c1 = c0.
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The proof goes as follows:

c0 = c1 ⇔
[

(x0 = x1)
c0
x0

]

c1
x1

⇔

[

(x1 = x0)
c0
x0

]

c1
x1

⇔ c1 = c0.

Axiom E4 allows a function symbol to be used in a proof as a function, and E5 allows
equal terms to be substituted into formulas with the result being equivalent formulas.
For example, given the NT-term u + v, by E4,

x0 = y0 ∧ x1 = y1 ⇒ x0 + x1 = y0 + y1,

and given the NT-formula u + v = v + u, by E5,
x0 = y0 ∧ x1 = y1 ⇒ x0 + x1 = x1 + x0 ↔ y0 + y1 = y1 + y0.

Formal proofs that require a deduction on an equality need to reference one of the
equality axioms from Axioms 5.1.1.

Existence and Uniqueness Axioms

The axioms will be ST-formulas (Example 2.1.3), where all terms represent sets. We
begin by assuming the existence of two sets.

AXIOM 5.1.2 [Empty Set]

∃x∀y(¬ y ∈ x).
In ST-formulas, a witness for the empty set axiom is denoted by { }, although it is
usually written as ∅.

AXIOM 5.1.3 [Infinity]

∃x({ } ∈ x ∧ ∀u[u ∈ x→ ∃y(y ∈ x ∧ u ∈ y ∧ ∀v[v ∈ u→ v ∈ y])]).
The standard interpretation of the infinity axiom is that there exists a set that contains
∅ and a ∪ {a} is an element of the set if a is an element of the set.

In Chapter 3, we noted that the elements of a set determine the set. For example,
{1, 2} = {1, 2, 2}. This principle is codified by the next axiom.

AXIOM 5.1.4 [Extensionality]

∀x∀y(∀u[u ∈ x↔ u ∈ y]→ x = y).
Suppose A1 and A2 are witnesses to the empty set axiom (5.1.2). Since x ∉ A1 and
x ∉ A2 for every x, we conclude that

x ∈ A1 ↔ x ∈ A2.



228 Chapter 5 AXIOMATIC SET THEORY

Therefore,A1 = A2 by extensionality (Axiom 5.1.4), whichmeans that∅ is thewitness
to the empty set axiom. This uniqueness result does not appear to extend to the infinity
axiom because both

{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},…}

and
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},

… , {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},…}

are witnesses, provided that they are sets.

Construction Axioms

Now to build some sets. The next four axioms allow us to do this.
AXIOM 5.1.5 [Pairing]

∀u∀v∃x∀w (w ∈ x↔ w = u ∨w = v).
Suppose thatM andN are sets. Since {M,N} is a witness of

∃x∀w (w ∈ x↔ w =M ∨w = N),

{M,N} is a set by the pairing axiom, and from this, we conclude that {M, {M,N}},
{N, {M,N}}, and {{M,N}} = {{M,N}, {M,N}} are sets. Because {M,M}
equals {M}, pairing along with extensionality prove the existence of singletons. For
example, ifW is a witness to the Infinity Axiom, {∅,W }, {∅}, and {∅, {∅,W }} are
sets.

AXIOM 5.1.6 [Union]

∀x∃y∀u(u ∈ y↔ ∃v[v ∈ x ∧ u ∈ v]).
By the union axiom, ⋃M is a set, and since M ∪ N =

⋃

{M,N}, we conclude
thatM ∪N is a set. Furthermore, the empty set, union, and pairing axioms can be used
to prove that for any n ∈ N, there exists a set of the form {a0, a1,… , an} (Exercise 3).

AXIOM 5.1.7 [Power Set]

∀x∃y∀u(u ∈ y↔ ∀v[v ∈ u→ v ∈ x]).
Because of Definition 3.3.1, the power set axiom can be written as

∀x∃y∀u(u ∈ y↔ u ⊆ x).

We conclude that for every setM , P(M) is a set by the power set axiom, and by exten-
sionality, P(M) is the unique set of subsets ofM .

The next axiom is actually what is called an axiom scheme, infinitely many axioms,
one for every formula. They are sometimes called the separation axioms.
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AXIOMS 5.1.8 [Subset]

For every ST-formula p(u) not containing the symbol y, the following is an axiom:
∀x∃y∀u [u ∈ y↔ u ∈ x ∧ p(u)] .

The formula p(u) in the subset axioms cannot contain the symbol y because the axioms
yield the existence of this set. If y was among its symbols, the existence of y would
depend on y.

The subset axioms yield many familiar sets.
∙ Let ℱ be a set. By a subset axiom, there exists a set C such that

x ∈ C ↔ x ∈
⋃

ℱ ∧ ∀c(c ∈ ℱ → x ∈ c).

Observe that the symbol C does not appear in the formula
∀c(c ∈ A→ x ∈ c).

Also, observe that the set C is the intersection of ℱ . Hence, ⋂ℱ is a set, and
sinceM ∩N =

⋂

{M,N}, we conclude thatM ∩N is a set.
∙ By a subset axiom, there exists a set D such that

x ∈ D ↔ x ∈M ∧ x ∉ N,

soM ⧵N is a set.

Replacement Axioms

Given sets A and B, the function ' : A → B is a set because ' ⊆ A × B and A × B
is a set. Suppose, instead, that the function is defined using a formula p(x, y) and that
its domain is given by a set A. It cannot be concluded from Axioms 5.1.4–5.1.10 that
the range {y : x ∈ A ∧ p(x, y)} is a set. However, it appears reasonable that it is. For
example, define

p(x, y) := y ∈ Z ∧ y ≤ x ∧ ∀z(z ∈ Z ∧ y ≤ z→ x < z).

An examination of the formula shows p(3.4, 4) and p(−7.1,−8). Since
p(x, y1) ∧ p(x, y2)→ y1 = y2,

the formula p(x, y) defines a function (Definition 4.4.10). If the domain is given to be
[0,∞), its range is the set [0,∞)∩Z. Generalizing to an arbitrary p(x, y), it is expected
that the range would be a set if the domain is a set. The next axiom scheme guarantees
this. It was first found in correspondence between Cantor and Richard Dedekind (Can-
tor 1932) and Dmitry Mirimanoff (1917) with formal versions by Abraham Fraenkel
(1922) and Thoralf Skolem (1922).
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AXIOMS 5.1.9 [Replacement]

For every ST-formula p(t, w) not containing the symbol y, the following is an
axiom:

∀x[∀u∀v1∀v2(u ∈ x ∧ p(u, v1) ∧ p(u, v2)→ v1 = v2)
→ ∃y∀w(w ∈ y↔ ∃t[t ∈ x ∧ p(t, w)])].

As an example, every indexed family of sets is a set. To prove this, let I be a set and
Ai be a set for all i ∈ I . Define

p(i, y) := y = Ai.
Observe that by E2 and E3 (Axioms 5.1.1),

y1 = Ai ∧ y2 = Ai ⇒ y1 = y2.

Therefore, by a replacement axiom (5.1.9), there exists a set ℱ such that
w ∈ ℱ ↔ ∃i(i ∈ I ∧w = Ai),

so ℱ = {Ai : i ∈ I} is a set, which implies that the union and intersection of families
of sets are sets.

Suppose a ∈ M and b ∈ N . By the subset and pairing axioms, we conclude that
{a, b}, (a, b) = {{a}, {a, b}} (Definition 3.2.8), and {(a, b)} are sets . Therefore, fixing
b,

{{(a, b)} : a ∈M}

is a family of sets, which implies that it is a set. Likewise,
{{{(a, b)} : a ∈M} : b ∈ N}

is a set. Hence, by the union axiom (5.1.6),
M ×N =

⋃⋃

{{{(a, b)} : a ∈M} : b ∈ N}
is a set. This implies, using a subset axiom (5.1.8), that any binary relation R such that
dom(R) ⊆ M and ran(R) ⊆ N is a set.

Axiom of Choice

Suppose that we are given the pairwise disjoint family of sets
ℱ = {{1, 3, 5}, {2, 9, 11}, {7, 8, 13}}.

It is easy to find a set S such that
S ∩ A is a singleton for every A ∈ ℱ . (5.1)
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Simply run through the elements of ℱ and choose an element from each set and put it
inS. Sinceℱ is pairwise disjoint, each choice will differ from the others. For example,
it might be that

S = {1, 9, 13}.

However, what happens ifℱ is an infinite set? If there was not a systematic way where
elements could be chosen from the sets of ℱ , we would be left with making infinitely
many choices, which is something that we cannot do. Nonetheless, it appears reason-
able that there is a set S that intersects each member of ℱ exactly once. Such a set
cannot be proved to exist from Axioms 5.1.2 to 5.1.9, so we need another axiom. It is
called the axiom of choice. We will have to use it every time that an infinite number
of arbitrary choices need to be made.

AXIOM 5.1.10 [Choice]

If ℱ is a family of pairwise disjoint, nonempty sets, there exists S ⊆
⋃

ℱ such
that S ∩ A is a singleton for all A ∈ ℱ .

The statement of the axiom of choice can be written as an ST-formula (Exercise 12).
Also, notice that S in Axiom 5.1.10 is a function (Exercise 13). It is called a selector.

The next follows quickly from the axiom of choice. In fact, the proposition is equiv-
alent to the axiom (Exercise 15), so this corollary is often used as a replacement for
it.

COROLLARY 5.1.11

For every binary relation R, there exists a function ' such that ' ⊆ R and
dom(') = dom(R).

PROOF
LetR ⊆ A×B. Defineℱ = {{a}×[a]R : a ∈ A}, which is a set by a replacement
axiom (Exercise 14). Sinceℱ is pairwise disjoint and the set {a}× [a]R ≠ ∅ for
all a ∈ dom(R), the axiom of choice (5.1.10) implies that there exists a selector
S such that S ⊆

⋃

ℱ and S ∩ ({a} × [a]R) is a singleton for all a ∈ dom(R).
Thus, S ⊆ R, and for all a ∈ dom(R), there exists a unique b ∈ B such that
aR b. This implies that S is the desired function.
Given a family of sets ℱ , define a relation R ⊆ ℱ ×

⋃

ℱ by
R = {(A, a) : A ∈ ℱ ∧ a ∈ A}.

By Corollary 5.1.11, there exists a function � : ℱ →
⋃

ℱ such that �(A) ∈ A for all
A ∈ ℱ . The function � is called a choice function.

EXAMPLE 5.1.12

Let A = {Ai : i ∈ I} be a family of nonempty sets. We want to define a family
of singletonsℬ such that for all i ∈ I ,

if {ai} ∈ℬ, then ai ∈ Ai.
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By Corollary 5.1.11, there exists a choice function � : A →
⋃

A . The family
ℬ = {{�(Ai)} : i ∈ I} is the desired set because �(Ai) ∈ Ai for all i ∈ I .
There are many theorems equivalent to the axiom of choice (5.1.10). One such result

involves families of sets. Take n ∈ N and define
An = {{0}, {0, 1},… , {0, 1,… , n}}.

Observe that An is a chain with respect to ⊆ and contains a maximal element (Defini-
tion 4.3.16), which is {0, 1,… , n}. However, the chain

A = {{0}, {0, 1},… , {0, 1,… , n},…}

has no maximal element. There are many sets that can be added to A to give it a
maximal element, but the natural choice is to add the union of A to the family giving

A ′ = {{0}, {0, 1},… , {0, 1,… , n},… ,N}.

A ′ has a maximal element, namely, N. The generalization of this result to any family
of sets was first proved by Kuratowski (1922) and then independently by Zorn (1935)
for whom the theorem is named despite Kuratowski’s priority. The proof given is es-
sentially due to Zermelo (Halmos 1960).

THEOREM 5.1.13 [Zorn’s Lemma]

Let A be a family of sets. If ⋃C ∈ A for every chain C of A with respect to
⊆, there existsM ∈ A such thatM ⊄ A for all A ∈ A .

PROOF
Let � : P(A ) ⧵ {∅} → A be a choice function (Corollary 5.1.11). For every
chain C of A , define

C̄ = {A ∈ A : C ∪ {A} is a chain}.
Notice that C̄ is the set of elements of A that when added to C yields a chain.
Let Ch(A ) be defined as the set of all chains of A . That both C̄ and Ch(A ) are
sets is left to Exercise 17(a). Define

X : Ch(A )→ Ch(A )

by
X(C ) =

{

C ∪ {�(C̄ ⧵ C )} if C̄ ⧵ C ≠ ∅,
C if C̄ ⧵ C = ∅.

Next, suppose that C0 is a chain of A such that X(C0) = C0. By the assumption
on A , we have that⋃C0 ∈ A . To prove that⋃C0 is a maximal element of A ,
take A ∈ A such that ⋃C0 ⊂ A. Since A has an element that is not in any of
the elements of C0, the union C0 ∪ {A} is a chain properly containing C0, whichis impossible. We conclude that the theorem is proved if C0 is shown to exist.
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To accomplish this, we begin with a definition. A subset T of Ch(A ) is called a
tower when

∙ ∅ ∈ T ,
∙ X(C ) ∈ T for all C ∈ T ,
∙
⋃

D ∈ T for every chain D ⊆ T .
Define To(A ) to be the set of all towers ofA . Observe that Ch(C ) and⋂To(A )
are both towers [Exercise 17(b)].

Take C ∈
⋂

To(A ) such that C is comparable with respect to inclusion to
every element of ⋂To(A ). Such a set C exists since ∅ is an element of To(A )
and comparable to every element of⋂To(A ). Suppose A ∈ ⋂

To(A ) such that
A ⊂ C . Because ⋂To(A ) is a tower, X(A) ∈ ⋂

To(A ). If C ⊂ X(A), then
X(A) ⧵ A has at least two elements, which is impossible. Therefore,

if A ∈⋂

To(A ) and A ⊂ C, then X(A) ⊆ C. (5.2)
Define

T = {A ∈
⋂

To(A ) : A ⊆ C ∨ X(C) ⊆ A}.
If A ⊆ C , then A ⊆ X(C) since C ⊆ X(C). Hence, every element of T is
comparable to X(C). Also, T is a tower because of the following:

∙ ∅ ∈ T because ∅ ∈ ⋂

To(A ) and ∅ ⊆ C .
∙ Let B ∈ T . Since ⋂

To(A ) is a tower, X(B) ∈ ⋂

To(A ). If B ⊂ C ,
then X(B) ⊆ C by (5.2). If C ⊆ B, then X(C) ⊆ X(B). In both cases,
X(B) ∈ T .

∙ Let C ⊆ T be a chain. Then, ⋃C ∈
⋂

To(A ). Suppose there exists
C0 ∈ C such that C0 is not a subset of C . This implies that X(C) ⊆ C0.Thus, X(C) ⊆ ⋃

C , so⋃C ∈ T .
Hence, T =

⋂

To(A ) because T ⊆
⋂

To(A ). Therefore, ⋂To(A ) is a chain
because C is arbitrary [Exercise 17(c)]. Since⋂To(A ) is a tower,

⋃⋂

To(A ) ∈
⋂

To(A )

and then
X
(

⋃⋂

To(A )
)

∈
⋂

To(A ).

Hence, since⋃⋂

To(A ) is an upper bound of⋂To(A ),
X
(

⋃⋂

To(A )
)

⊆
⋃⋂

To(A ),

which yields
X
(

⋃⋂

To(A )
)

=
⋃⋂

To(A ).

There are many equivalents to the axiom of choice (Rubin and Rubin 1985, Jech
1973). One of them is Zorn’s lemma.
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THEOREM 5.1.14

The axiom of choice is equivalent to Zorn’s lemma.
PROOF

Since we have already proved that the axiom of choice (5.1.10) implies Zorn’s
lemma (Theorem 5.1.13), we only need to prove the converse. Wemust be careful
to only use Axioms 5.1.2–5.1.9 and not Axiom 5.1.10.

Assume Zorn’s lemma and let R be a relation. Define
A = {' : ' ⊆ R ∧ ' is a function}.

Let C be a chain of elements of A .
∙ Take  ∈ ⋃

C , so  ∈ C for some C ∈ C . This implies that C is a subset
of R. Therefore,  ∈ R, proving that⋃C ⊆ R.

∙
⋃

C is a function by Exercise 4.4.13.
We conclude that ⋃C ∈ A . Thus, by Zorn’s lemma, there exists a maximal
element Φ ∈ A . This means that Φ ⊆ R and dom(Φ) ⊆ dom(R). To prove that
dom(R) ⊆ dom(Φ), let (x, y) ∈ R and suppose that x ∉ dom(Φ). This implies
that Φ ∪ {(x, y)} ⊆ R is a function. Hence, Φ ∪ {(x, y)} ∈ A , contradicting the
maximality of Φ. We conclude that Φ is the desired function, and the axiom of
choice follows (Exercise 15).
There was a controversy regarding the axiom of choice when Zermelo first proposed

it. Despite mathematicians having previously used it implicitly, some objected to its
nonconstructive nature. The other axioms yield distinct results, but the axiom of choice
results in a set with elements that are not clearly identified. Over time, however, most
objections have faded. This is because the majority of mathematicians regard it as rea-
sonable and generally those who question the axiom of choice realize that eliminating
it would lead to serious problems because many proofs in various fields of mathematics
rely on the axiom.

Axiom of Regularity

The ideas that led to the next axiom (also known as the axiom of foundation) can be
found in Mirimanoff (1917), while the statement of the axiom is credited to Skolem
(1922) and John von Neumann (1923).

AXIOM 5.1.15 [Regularity]

∀x(x ≠ { }→ ∃y[y ∈ x ∧ ¬∃u(u ∈ y ∧ u ∈ x)]).
The main result of the regularity axiom is that it prevents sets from being elements of
themselves. Suppose there exists a set A such that A ∈ A. Then, A∩{A} ≠ ∅, but the
regularity axiom implies that A ∩ {A} should be empty.
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THEOREM 5.1.16

No set is an element of itself.
If V = {x : x is a set} is a set, V ∈ V , contradicting Theorem 5.1.16. Thus, the
theorem’s corollary quickly follows.

COROLLARY 5.1.17

There is no set of all sets.
Because of the regularity axiom (5.1.15), A ∉ A for all sets A. Therefore, {x : x ∉ x}
is not a set by, which prevents Russell’s paradox from being deduced from the axioms,
provided that they are consistent (Theorem 1.5.2).

The axiom of regularity is the final axiom of our chosen collection of axioms. It
is believed that they do not prove any contradictions, which implies that the axioms
prevent the construction of {x : x ∉ x} as a set. Therefore, we write the follow-
ing definition. The collections of axioms are named after the mathematician who was
primarily responsible for their selection (Zermelo 1908).

DEFINITION 5.1.18

∙ Axioms 5.1.2–5.1.8 are the Zermelo axioms. This collection of sentences is
denoted by Z.

∙ Axioms 5.1.2–5.1.8 combined with replacement and regularity (Axioms 5.1.9
and 5.1.15) are the Zermelo–Fraenkel axioms, denoted by ZF.

∙ The Zermelo–Fraenkel axioms with the axiom of choice is denoted by ZFC.
The nonempty sets that follow from ZFC have the property that all of their elements

are sets. Sets with this property are called hereditary or pure. Assuming ZFC does
not prevent us from working with different types of sets, such as sets of symbols or
formulas, but we must remember that such nonhereditary sets are not products of ZFC,
so they must be handled with care because we do not want to fall into a paradox.
Exercises

1. Let S be a set of theory symbols. Let c1, c2, c3, c4 ∈ S be constant symbols and
f ∈ S be a binary function symbol. Suppose that p(x, y) is an S-formula. Use the
Equality Axioms (5.1.1) to prove the following.

(a) ⊢ c1 = c1
(b) ⊢ c1 = c2 ∧ c2 = c3 → c1 = c3
(c) ⊢ c1 = c2 ∧ c3 = c4 → f (c1, c3) = f (c2, c4)
(d) ⊢ c1 = c2 ∧ c3 = c4 → [p(f (c1), c3)↔ p(f (c2), c4)]

2. Prove ∀x∀y(x = y→ ∀u[u ∈ x↔ u ∈ y]).
3. For any n ∈ Nwith n > 0, prove that there exists a set of the form {a0, a1,… , an−1}.
4. Let ℱ be a family of sets. Prove that P(⋃⋂

ℱ ) is a set.
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5. Use a subset axiom (5.1.8) to prove that there is no set of all sets. This proves that
Russell’s paradox does not follow from the axiom of Z.
6. Prove that there is no set that has every singleton as an element.
7. Let A and B be sets. Define the symmetric difference of A and B by

A M B = A ⧵ B ∪ B ⧵ A.

Prove that A M B is a set.
8. Prove the given equations for all sets A, B, and C .

(a) A M ∅ = A
(b) A M U = A
(c) A M B = B M A
(d) A M (B M C) = (A M B) M C
(e) A M B = (A ∪ B) ⧵ (B ∪ A)
(f) (A M B) ∩ C = (A ∩ C) M (B ∩ C)

9. Given sets I and Ai for all i ∈ I , show that⋃i∈I Ai and
⋂

i∈I Ai are sets.
10. Prove that A0 × A1 × · · · × An−1 is a set if A0, A1,… , An−1 are sets.
11. Show that the Cartesian product of a nonempty family of nonempty sets is not
empty.
12. Write the Axiom of Choice (5.1.10) as an ST-formula.
13. Demonstrate that a selector is a function.
14. In the proof of Corollary 5.1.11, prove that {{a} × [a]R : a ∈ A} is a set.
15. Prove that Corollary 5.1.11 implies Axiom 5.1.10.
16. Let R = R × {0, 1}. Find a function F : R → {0, 1} such that F (a) = 0 for all
a ∈ R.
17. Prove the following parts of the proof of Zorn’s lemma (5.1.13).

(a) C̄ and Ch(A ) are sets.
(b) Ch(C ) and ∩To(A ) are towers.
(c) ⋂

To(A ) is a chain.
18. Prove that ZF and Zorn’s lemma imply the axiom of choice.
19. Use Zorn’s lemma to prove that for every function ' : A → B, there exists a
maximal C ⊆ A such that ' �C is one-to-one.
20. Prove that if A is a collection of sets such that⋃C ∈ A for every chain C ⊆ A ,
then A contains a maximal element.
21. Let (A,R) be a partial order. Prove that there exists an order S on A such that
R ⊆ S and S is linear.
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22. Use the regularity axiom (5.1.15) to prove that if {a, {a, b}} = {c, {c, d}, then
a = c and b = d. This gives an alternative to Kuratowski’s definition of an ordered
pair (Definition 3.2.8).
23. Prove that there does not exist an infinite sequence of setsA0, A1, A2,… such that
Ai+1 ∈ Ai for all i = 0, 1, 2,… .
24. Prove that the empty set axiom (5.1.2) can be proved from the other axioms of
ZFC.
25. Use Axiom 5.1.9 to prove that the subset axioms (5.1.8) can be proved from the
other axioms of ZFC.
26. Let (A,R) be a poset. Prove that every chain of A is contained in a maximal chain
with respect to ⊆. This is called the Hausdorff maximal princple.
27. Prove that the Hausdorff maximal principle implies Zorn’s lemma, so is equivalent
to the axiom of choice.

5.2 NATURAL NUMBERS

In order to study mathematics itself, as opposed to studying the contents of mathemat-
ics as when we study calculus or Euclidean geometry, we need to first develop a system
in which all of mathematics can be interpreted. In such a system, we should be able to
precisely define mathematical concepts, like functions and relations; construct exam-
ples of them; and write statements about them using a very precise language. ZFCwith
first-order logic seems like a natural choice for such an endeavor. However, in order
to be a success, this system must have the ability to represent the most basic objects
of mathematical study. Namely, it must be able to model numbers. Therefore, within
ZFC families of sets that copy the properties of N, Z,Q, R, and C will be constructed.
Since we can do this, we conclude that N, Z, Q, R, and C are themselves sets, and we
also conclude that what we discover about their analogs are true about them. We begin
with the natural numbers.

DEFINITION 5.2.1

For every set a, the successor of a is the set a+ = a ∪ {a}. If a is the successor
of b, then b is the predecessor of a and we write b = a−.

For example, we have that {3, 5, 7}+ = {3, 5, 7, {3, 5, 7}} and ∅+ = {∅}. For con-
venience, write a++ for (a+)+, so ∅++ = {∅, {∅}}. Also, the predecessor of the set
{∅, {∅}, {∅, {∅}}} is {∅, {∅}}, so write {∅, {∅}, {∅, {∅}}}− = {∅, {∅}}. Fur-
thermore, since ∅ contains no elements, we have the following.

THEOREM 5.2.2

∅ does not have a predecessor.
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Although every set has a successor, we are primarily concerned with certain sets
that have a particular property.

DEFINITION 5.2.3

The set A is inductive if ∅ ∈ A and a+ ∈ A for all a ∈ A.
Definition 5.2.3 implies that if A is inductive, A contains the sets

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},…

because
∅+ = {∅},

{∅}+ = {∅, {∅}},
{∅, {∅}}+ = {∅, {∅}, {∅, {∅}}},

{∅, {∅}, {∅, {∅}}}+ = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
⋮

Of course, Definition 5.2.3 does not guarantee the existence of an inductive set. The
infinity axiom (5.1.3) does that. Then, by a subset axiom (5.1.8),

∀x∃y∀u(u ∈ y↔ u ∈ x ∧ x is inductive ∧ ∀w[w is inductive → u ∈ w]),

where w is inductive can be written as
∅ ∈ w ∧ ∀a(a ∈ w→ a+ ∈ w).

Therefore, the collection that contains the elements that are common to all inductive
sets is a set, and we can make the next definition (von Neumann 1923).

DEFINITION 5.2.4

An element that is a member of every inductive set is called a natural number.
Let ! denote the set of natural numbers. That is,

! = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},…}.

Definition 5.2.4 suggests that the elements of ! will be interpreted to represent the
elements of N, so represent each natural number with the appropriate element of N:

0 = ∅,
1 = {∅},
2 = {∅, {∅}},
3 = {∅, {∅}, {∅, {∅}}},
4 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
⋮
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Although the choice of which sets should represent the numbers of N is arbitrary, our
choice does have some fortunate properties. For example, the number of elements in
each natural number and the number of N that it represents are the same. Moreover,
notice that each natural number can be written as

0 = { },
1 = {0},
2 = {0, 1},
3 = {0, 1, 2},
4 = {0, 1, 2, 3},
⋮

and also note that
⋃

1 = 0,
⋃

2 = 1,
⋃

3 = 2,
⋃

4 = 3,

⋮

The empty set is an element of ! by definition, so suppose n ∈ ! and take A to be
an inductive set. Since n is a natural number, n ∈ A, and since A is inductive, n+ ∈ A.
Because A is arbitrary, we conclude that n+ is an element of every inductive set, so
n+ ∈ ! (Definition 5.2.4). This proves the next theorem.

THEOREM 5.2.5

! is inductive.
The proof of the next theorem is left to Exercise 5.

THEOREM 5.2.6

If A is an inductive set and A ⊆ !, then A = !.

Order

Because we want to interpret ! so that it represents N, we should be able to order ! as
N is ordered by ≤. That is, we need to find a partial order on ! that is also a well-order.
To do this, we start with a definition.

DEFINITION 5.2.7

A set A is transitive means for all a and b, if b ∈ a and a ∈ A, then b ∈ A.
Observe that ∅ is transitive because a ∈ ∅ is always false. More transitive sets are
found in the next theorem.
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THEOREM 5.2.8

∙ Every natural number is transitive.
∙ ! is transitive.

PROOF
The proof of the second part is left to Exercise 4. We prove the first by defining

A = {n ∈ ! : n is transitive}.
We have already noted that 0 ∈ A, so assume that n ∈ A and let b ∈ a and
a ∈ n ∪ {n}. If a ∈ {n}, then b ∈ n. If a ∈ n, then by hypothesis, b ∈ n. In
either case, b ∈ n+ since n ⊆ n+, so n+ ∈ A. Hence, A is inductive, so A = !
by Theorem 5.2.6.
In addition to being transitive, each element of ! has another useful property that

provides another reason why their choice was a wise one.
LEMMA 5.2.9

If m, n ∈ !, then m ⊂ n if and only if m ∈ n.
PROOF

Take m, n ∈ !. If m ∈ n, then m ⊂ n since n is transitive (Exercise 3). To prove
the converse, define

A = {k ∈ ! : ∀l(l ∈ ! ∧ [l ⊂ k→ l ∈ k])}.

We show that A is inductive. Trivially, 0 ∈ A. Now take n ∈ A and let m ∈ !
such that m ⊂ n+. We have two cases to consider.

∙ Suppose n ∉ m. Then, m ⊆ n. If m ⊂ n, then m ∈ n by hypothesis, which
implies that m ∈ n+. If m = n, then m ∈ n+.

∙ Next assume that n ∈ m. Take x ∈ n. Since m is transitive by Theo-
rem 5.2.8, we have that x ∈ m. This implies that n ∪ {n} ⊆ m, but this is
impossible since m ⊂ n+, so n ∉ m.

For example, we see that 2 ∈ 3 and 2 ⊂ 3 because
{∅, {∅}} ∈ {∅, {∅}, {∅, {∅}}}

and
{∅, {∅}} ⊂ {∅, {∅}, {∅, {∅}}}.

Now use Lemma 5.2.9 to define an order on !. Instead of using 4, we use ≤ to copy
the order on N.
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DEFINITION 5.2.10

For all m, n ∈ !, let
m ≤ n if and only if m ⊆ n.

Define m < n to mean m ≤ n but m ≠ n.
Lemma 5.2.9 in conjunction with Definition 5.2.10 implies that for all m, n ∈ !, we
have that

m < n if and only if m ⊂ n if and only if m ∈ n.
The order of Definition 5.2.10 makes ! a chain with ∅ as its least element.

THEOREM 5.2.11

(!,≤) is a linear order.
PROOF

That (!,≤) is a poset follows as in Example 4.3.9. To show that ! is a chain
under ≤, define

A = {k ∈ ! : ∀l(l ∈ ! ∧ [k ≤ l ∨ l ≤ k])}.

We prove that A is inductive.
∙ Since ∅ is a subset of every set, 0 ∈ A.
∙ Suppose that n ∈ A and let m ∈ !. We have two cases to check. First,
assume that n ≤ m. If n < m, then n+ ≤ m, while if n = m, then m < n+.
Now suppose that m ≤ n, but this implies that m < n+. In either case,
n+ ∈ A.

We can now quickly prove the following.
COROLLARY 5.2.12

For all m, n ∈ !, if m+ = n+, then m = n.
PROOF

Let m and n be natural numbers and assume that
m ∪ {m} = n ∪ {n}. (5.3)

Take x ∈ m. Then, x ∈ n or x = n. If x ∈ n, then m ⊆ n, so suppose that
x = n. This implies that n ∈ m, so m ≠ n by Theorem 5.1.16. However, we then
have m ∈ n by (5.3), which contradicts the trichotomy law (Theorem 4.3.21).
Similarly, we can prove that n ⊆ m.

Since the successor defines a function S : ! → ! where S(n) = n+, Corollary 5.2.12
implies that S is one-to-one.

Thereom 5.2.11 shows that (!,≤) is a linear order as (N,≤) is a linear order. The
next theorem shows that the similarity goes further.
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THEOREM 5.2.13

(!,≤) is a well-ordered set.
PROOF

By Theorem 5.2.11, (!,≤) is a linear order. To prove that it is well-ordered,
suppose that A ⊆ ! such that A does not have a least element. Define

B = {k ∈ ! : {0, 1,… , k} ∩ A = ∅}.

We prove that B is inductive.
∙ If 0 ∈ A, then A has a least element because 0 is the least element of !.
Hence, {0} ∩ A = ∅, so 0 ∈ B.

∙ Let n ∈ B. This implies that {0, 1,… , n} ∩ A is empty. Thus, n+ cannot
be an element of A for then it would be the least element of A. Hence,
{0, 1,… , n, n+} ∩ A = ∅ proving that n+ ∈ B.

Therefore, B = !, which implies that A is empty.

Recursion

The familiar factorial is defined recursively as
0! = 1, (5.4)

(n + 1)! = (n + 1)n! (n ∈ N). (5.5)
A recursive definition is one that is given in terms of itself. This is illustrated in
(5.5) where the factorial is defined using the factorial. It appears that the factorial is a
function N → N, but a function is a set, so why do (5.4) and (5.5) define a set? Such a
definition is not found among the axioms of Section 5.1 or the methods of Section 3.1.
That they do define a function requires an important theorem.

THEOREM 5.2.14 [Recursion]

LetA be a set and a ∈ A. If g is a functionA→ A, there exists a unique function
f : !→ A such that

∙ f (0) = a,
∙ f (n+) = g(f (n)) for all n ∈ !.

PROOF
Let g : A→ A be a function. Define

ℱ = {ℎ : ℎ ⊆ ! × A ∧ (0, a) ∈ ℎ
∧∀n∀y[(n, y) ∈ ℎ→ (n+, g(y)) ∈ ℎ])}. (5.6)

Note thatℱ is a set by a subset axiom (5.1.8) andℱ is nonempty because!×A ∈
ℱ . Let

f =
⋂

ℱ .
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Observe that f ∈ ℱ (Exercise 8). Define
D = {n ∈ ! : ∃z[(n, z) ∈ f ] ∧ ∀y∀y′[(n, y) ∈ f ∧ (n, y′) ∈ f → y = y′]}.

We prove that D is inductive.
∙ Since ℱ ≠ ∅, we know that (0, a) ∈ f by (5.6), so let (0, b) also be an
element of f . If we assume that a ≠ b, then f ⧵ {(0, b)} ∈ ℱ , which is
impossible because it implies that (0, b) ∉⋂

ℱ . Hence, 0 ∈ D.
∙ Suppose that n ∈ D. This means that (n, z) ∈ f for some z ∈ A. Thus,
(n+, g(z)) ∈ f by (5.6). Assume that (n+, y) ∈ f . If y ≠ g(z), then
f ⧵ {(n+, y)} ∈ ℱ , which again leads to the contradictory (n+, y) ∉⋂

ℱ .
Hence, f is a function ! → A (Theorem 5.2.6). We confirm that f has the
desired properties.

∙ f (0) = a because (0, a) ∈⋂

ℱ .
∙ Take n ∈ ! and write y = f (n). This implies that (n, y) ∈ f , so we have
that (n+, g(y)) ∈ f . Therefore, f (n+) = g(y) = g(f (n)).

To prove that f is unique, let f ′ : ! → A be a function such that f ′(0) = a
and f ′(n+) = g(f ′(n)) for all n ∈ !. Let

E = {n ∈ ! : f (n) = f ′(n)}.
The set E is inductive because f (0) = a = f ′(0) and assuming n ∈ ! we have
that f (n+) = g(f (n)) = g(f ′(n)) = f ′(n+).
The factorial function has domainN but the recursion theorem (5.2.14) gives a func-

tion with domain ! and uses the successor of Definition 5.2.1. We need a connection
between N and !. We do this by defining two operations on ! that we designate by +
and ⋅ and then showing that the basic properties of ! under these two operations are
the same as the basic properties of N under standard addition and multiplication.

Arithmetic

We begin with addition. Let g : !→ ! be defined by g(n) = n+. For every m ∈ !, by
Theorem 5.2.14, there exists a unique function fm : !→ ! such that

fm(0) = m

and for all n ∈ !,
fm(n+) = g(fm(n)) = [fm(n)]+.

Define
a = {((m, n), fm(n)) : m, n ∈ !}.

Since fm is a function for every n ∈ !, the set a is a binary operation (Definition 4.4.26).
Observe that for all m, n ∈ !,
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∙ a(m, 0) = m,
∙ a(m, n+) = a(m, n)+.

We know that for every k, l ∈ N, we have that k + 0 = k and to add k + l, one simply
adds 1 a total of l times to k. This is essentially what a does to the natural numbers.
For example, for 1, 3, 4 ∈ N,

1 + 3 = ([(1 + 1) + 1] + 1) = 4

and for 1, 2, 3, 4 ∈ ! (page 238),
a(1, 3) = a(1, 2+)

= a(1, 2)+

= a(1, 1+)+

= a(1, 1)++

= a(1, 0+)++

= a(1, 0)+++

= 1+++

= 2++

= 3+

= 4.

Therefore, we choose a to be addition on!. To define the addition, we only need to cite
the two properties given in Theorem 5.2.14. Since each fm is unique, there is no other
function to which the definition could be referring. Therefore, we can define addition
recursively.

DEFINITION 5.2.15

For all m, n ∈ !,
∙ m + 0 = m,
∙ m + n+ = (m + n)+.

Notice that m+ = (m + 0)+ = m + 0+ = m + 1. Furthermore, using the notation from
page 238, we conclude that 1 + 3 = 4 because a(1, 3) = 4.

The following lemma shows that the addition given in Definition 5.2.15 has a prop-
erty similar to that of commutativity.

LEMMA 5.2.16

For all m, n ∈ !,
∙ 0 + n = n.
∙ m+ + n = (m + n)+.



Section 5.2 NATURAL NUMBERS 245

PROOF
Let m, n ∈ !. To prove that 0 + n = n, we show that

A = {k ∈ ! : 0 + k = k}
is inductive.

∙ 0 ∈ A because 0 + 0 = 0.
∙ Let n ∈ A. Then, 0 + n+ = (0 + n)+ = n+, so n+ ∈ A.

To prove that m+ + n = (m + n)+, we show that
B = {k ∈ ! : m+ + k = (m + k)+}

is inductive.
∙ Again, 0 ∈ B because 0 + 0 = 0.
∙ Suppose that n ∈ B. We have that

m+ + n+ = (m+ + n)+ = (m + n)++ = (m + n+)+,

where the first and third equality follow byDefinition 5.2.15 and the second
follows because n ∈ B. Thus, n+ ∈ B.

Now to see that + behaves on ! as + behaves on N, we use Definition 4.4.31.
THEOREM 5.2.17

∙ The binary operation + on ! is associative and commutative.
∙ 0 is the additive identity for !.

PROOF
0 is the additive identity by Definition 5.2.15 and Lemma 5.2.16, and that + is
associative on ! is Exercise 14. To show that + is commutative, let m ∈ ! and
define

A = {k ∈ ! : m + k = k + m}.
As has been our strategy, we show that A is inductive.

∙ m + 0 = m by Definition 5.2.15, and 0 + m = m by Lemma 5.2.16, so
0 ∈ A.

∙ Let n ∈ A. Therefore, m + n = n + m, which implies that
m + n+ = (m + n)+ = (n + m)+ = n+ + m.

Hence, n+ ∈ A.
Multiplication on N can be viewed as iterated addition. For example,

3 ⋅ 4 = 3 + 3 + 3 + 3,

so we define multiplication recursively along these lines. As with addition, the result
is a binary operation by Theorem 5.2.14.
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DEFINITION 5.2.18

For all m, n ∈ !,
∙ m ⋅ 0 = 0,
∙ m ⋅ n+ = m ⋅ n + m.

For example, 3 ⋅ 4 = 12 because
3 ⋅ 4 = 3 ⋅ 3 + 3

= (3 ⋅ 2 + 3) + 3
= ([3 ⋅ 1 + 3] + 3) + 3
= ([(3 ⋅ 0 + 3) + 3] + 3) + 3
= ([3 + 3] + 3) + 3
= 12,

where ([3 + 3] + 3) + 3 = 12 is left to Exercise 13.
The next result is analogous to Lemma 5.2.16. Its proof is left to Exercise 9.
LEMMA 5.2.19

For all m, n ∈ !,
∙ 0 ⋅ m = 0,
∙ n+ ⋅ m = n ⋅ m + m.

We now prove that ⋅ on ! behaves as ⋅ on N and that + and ⋅ on ! interact with each
other via the distributive law as the two operations on N. For the proof, we introduce
two common conventions for these two operations.

∙ So that we lessen the use of parentheses, define ⋅ to have precedence over +, and
read from left to right. That is,

m ⋅ n + o = (m ⋅ n) + o and m + n ⋅ o = m + (n ⋅ o),
and

m + n + o = (m + n) + o and m ⋅ n ⋅ o = (m ⋅ n) ⋅ o.
∙ Define mn = m ⋅ n.
THEOREM 5.2.20

∙ The binary operation ⋅ on ! is associative and commutative.
∙ 1 is the multiplicative identity for !.
∙ The distributive law holds for !. This means that for all m, n, o ∈ !,

m(n + o) = mn + mo.



Section 5.2 NATURAL NUMBERS 247

PROOF
That the associative and commutative properties hold is Exercise 12. To prove
the other parts of the theorem, letm, n, o ∈ !. Since 0+ = 1, by Definition 5.2.18
and Lemma 5.2.16,

m1 = m0+ = m0 + m = 0 + m = m,

and by Lemma 5.2.19 and Definition 5.2.15, we have that 1m = m. To show that
the distributive law holds, define

A = {k ∈ ! : k(n + o) = kn + ko}.
Since 0(n + o) = 0 and 0n + 0o = 0 + 0 = 0, we have that 0 ∈ A. Now suppose
that m ∈ A. That is,

m(n + o) = mn + mo.

Therefore, m+ ∈ A because
m+(n + o) = m(n + o) + (n + o)

= (mn + mo) + (n + o)
= (mn + n) + (mo + o)
= m+n + m+o.

EXAMPLE 5.2.21

We revisit the factorial function. Since addition and multiplication are now de-
fined on !, let g : ! × !→ ! × ! be the function

g(k, l) = (k + 1, (k + 1)l).

Theorem 5.2.14 implies that there exists a unique function f : ! → ! × ! such
that

f (0) = (0, 1)

and
f (n + 1) = g(f (n)).

Let � be the projection map �(k, l) = l. By Theorem 5.2.6 and Exercise 10, we
conclude that for all n ∈ !,

f (n + 1) = (n + 1, (n + 1)(� ◦ f )(n)). (5.7)
Therefore, the factorial function n!, which is defined recursively by

0! = 1,
(n + 1)! = (n + 1)n! (n ∈ !),

is � ◦ f by the uniqueness of f .
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To solve an equation like 6+2x = 14 where the coefficients are from N, we can use
the cancellation law and write

6 + 2x = 14,
6 + 2x = 6 + 8,

2x = 8,
2x = 2 ⋅ 4,
x = 4.

For equations with coefficients in !, we need a similar law.
THEOREM 5.2.22 [Cancellation]

Let a, b, c ∈ !.
∙ If a + b = a + c, then b = c.
∙ If ab = ac and a ≠ 0, then b = c.

PROOF
The proof for multiplication is Exercise 15. For addition, define

A = {k ∈ ! : ∀l∀m(l ∈ ! ∧ m ∈ ! ∧ [k + l = k + m→ l = m])}.

Clearly, 0 ∈ A, so assume n ∈ A. To prove that n+ ∈ A, let b, c ∈ ! and suppose
that n++b = n++c. Then, (n+b)+ = (n+c)+ by Lemma 5.2.16, so n+b = n+c
by Corollary 5.2.12. Hence, b = c because n ∈ A.

Exercises

1. For every set A, show that A+ is a set.
2. For every n ∈ !, show that n+++++ = n + 5.
3. Show that the following are equivalent.

∙ A is transitive.
∙ If a ∈ A, then a ⊂ A.
∙ A ⊆ P(A).
∙

⋃

A ⊆ A.
∙

⋃

(A+) = A.
4. Prove that ! is transitive.
5. Prove Theorem 5.2.6.
6. Let A ⊆ !. Show that if⋃A = A, then A = !.
7. Take u, v, x, y ∈ ! and assume that u + x = v + y. Prove that u ∈ v if and only if
y ∈ x.
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8. Prove that f ∈ ℱ in the proof of Theorem 5.2.14.
9. Prove Lemma 5.2.19.
10. Prove (5.7) from Example 5.2.21.
11. Let A be a set and ' : A → A be a one-to-one function. Take a ∈ A ⧵ ran(').
Recursively define f : !→ A such that

f (0) = a,
f (n+) = '(f (n)).

Prove that f is one-to-one.
12. Let m, n, o ∈ !. Prove the given equations.

(a) mn = nm.
(b) m(n + o) = mn + mo.

13. Show that ([3 + 3] + 3) + 3 = 12.
14. Prove that addition on ! is associative.
15. For all a, b, c ∈ ! with a ≠ 0, prove that if ab = ac, then b = c.
16. Show that for all m, n ∈ !, if mn = 0, then m = 0 or n = 0.
17. We define exponentiation on !. For all n ∈ !,

n0 = 1,

nk
+
= nk ⋅ n.

(a) Use the recursion (Theorem 5.2.14) to prove that this defines a function !×
!→ !.

(b) Show that exponentiation on ! is one-to-one.
18. Let x, y, x ∈ !. Use the definition of Exercise 17 to prove the given equations.

(a) xy+z = xyxz.
(b) (xy)z = xzyz.
(c) (xy)z = xyz.

19. Let m, n, k ∈ !. Assume that m ≤ n and 0 ≤ k. Demonstrate the following.
(a) m + k ≤ n + k.
(b) mk ≤ nk.
(c) mk ≤ nk.

5.3 INTEGERS AND RATIONAL NUMBERS

Now that we have defined within set theory the set of natural numbers and confirmed
its basic properties, we wish to continue this with other sets of numbers. We begin with
the integers.
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Integers

We build the integers using the natural numbers. The problem is how to define the
negative integers. We need to decide how to represent the adjoining of the negative
sign to a natural number. One option that might work is to use ordered pairs. These are
always good options when extra information needs to be included with each element
of a set. For example, (4, 0) could represent 4 because 4 − 0 = 4, and (0, 4) could
represent −4 because 0 − 4 = −4. However, this is a problem because we did not
define subtraction on !, so we need another solution. Our decision is to generalize
this idea of subtracting coordinates to the set ! × !, but use addition to do it. Since
there are infinitely many pairs (m, n) such that m− n = 4, we equate them by using the
equivalence relation of Exercise 4.2.2.

DEFINITION 5.3.1

Let R be the equivalence relation on ! × ! defined by
(m, n)R (m′, n′) if and only if m + n′ = m′ + n.

Define ℤ = (! × !)∕R to be the set of integers.
Using Definition 5.3.1 we associate elements of Z with elements of ℤ:

Z ℤ
⋮ ⋮
−2 [(0, 2)]
−1 [(0, 1)]
0 [(0, 0)]
1 [(1, 0)]
2 [(2, 0)]
⋮ ⋮

Notice that because 0 and 2 are elements of !, the equivalence class [(0, 2)] is the name
for [(∅, {∅, {∅}})]. Also,

[(0, 2)] = [(1, 3)] = [(2, 4)] = · · · .

The ordering ofℤ is defined in terms of the ordering on!. Be careful to note that the
symbol≤will represent two different orders, one onℤ and one on! (Definition 5.2.10).
This overuse of the symbol will not lead to confusion because the order will be clear
from context. For example, in the next definition, the first ≤ is the order on ℤ, and the
second ≤ is the order on !.

DEFINITION 5.3.2

For all [(m, n)], [(m′, n′)] ∈ ℤ, define
[(m, n)] ≤ [(m′, n′)] if and only if m + n′ ≤ m′ + n

and
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[(m, n)] < [(m′, n′)] if and only if m + n′ < m′ + n.
Since −4 = [(0, 4)] and 3 = [(5, 2)], we have that −4 < 3 because 0 + 2 < 5 + 4.

Since (ℤ,≤) has no least element (Exercise 3), it is not well-ordered. However, it is
a chain. Note that in the proof the symbol ≤ is again overused.

THEOREM 5.3.3

(ℤ,≤) is a linear order.
PROOF

We use the fact that the order on ! is a linear order (Theorem 5.2.11). Let a, b ∈
ℤ, so a = (m, n) and b = (m′, n′) for some m, n, m′, n′ ∈ !.

∙ Because m + n ≤ m + n, we have a ≤ a.
∙ Suppose that a ≤ b and b ≤ a. This implies that m + n′ ≤ m′ + n and
m′ + n ≤ m + n′. Since ≤ is antisymmetric on !, m + n′ = m′ + n, which
implies that a = b, so ≤ is antisymmetric on ℤ.

∙ Using a similar strategy, it can be shown that ≤ is transitive on ℤ (Exer-
cise 4). Thus, (ℤ,≤) is a poset.

∙ Since (!,≤) is a linear order, m + n′ ≤ m′ + n or m′ + n ≤ m + n′. This
implies that a ≤ b or b ≤ a, so ℤ is a chain under ≤.

Although ! is not a subset of ℤ like N is a subset of Z, the set ! can be embedded
in ℤ (Definition 4.5.29). This is shown by the function ' : !→ ℤ defined by

'(n) = [(n, 0)]. (5.8)
We see that' is one-to-one because [(m, 0)] = [(n, 0)] implies thatm = n. The function
' is then an order isomorphism using the relation from Definition 5.3.2 (Exercise 1).

As with !, we define what it means to add and multiply two integers.
DEFINITION 5.3.4

Let [(m, n)], [(u, v)] ∈ ℤ.
∙ [(m, n)] + [(u, v)] = [(m + u, n + v)].
∙ [(m, n)] ⋅ [(u, v)] = [(mu + nv, mv + un)].

For example, the equation in ℤ,
[(5, 2)] + [(7, 1)] = [(12, 3)],

corresponds to the equation in Z,
3 + 6 = 9,
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and the equation
[(5, 2)] ⋅ [(7, 1)] = [(35 + 2, 5 + 14)] = [(37, 19)]

corresponds to the equation
3 ⋅ 6 = 18.

Before we check the properties of + and ⋅ on ℤ, we should confirm that these are
well-defined. Exercise 5 is for addition. To prove that multiplication is well-defined, let
[(m, n)] = [(m′, n′)] and [(u, v)] = [(u′, v′)]. Then, m+ n′ = m′ + n and u+ v′ = u′ + v.
Hence, by Theorem 5.2.20 in ! we have that

mu + n′u = m′u + nu,
mv + n′v = m′v + nv,

m′u + m′v′ = m′u′ + m′v,
n′u + n′v′ = n′u′ + n′v.

Therefore,
mu + n′u + m′v + nv + m′u + m′v′ + n′u′ + n′v

equals
m′u + nu + mv + n′v + m′u′ + m′v + n′u + n′v′,

so by Cancellation (Theorem 5.2.22),
mu + nv + m′v′ + n′u′ = mv + nu + m′u′ + n′v′.

This implies by Definition 5.3.1 that
[(mu + nv, mv + nu)] = [(m′u′ + n′v′, m′v′ + n′u′)],

and this by Definition 5.3.4 implies that
[(m, n)] ⋅ [(u, v)] = [(m′, n′)] ⋅ [(u′, v′)].

We follow the same order of operations with + and ⋅ on ℤ as on ! and also write
mn for m ⋅ n.

THEOREM 5.3.5

∙ The binary operations + and ⋅ on ℤ are associative and commutative.
∙ [(0, 0)] is the additive identity for ℤ, and [(1, 0)] is its multiplicative identity.
∙ For every a ∈ ℤ, there exists an additive inverse of a.
∙ For all a, b, c ∈ ℤ, the distributive law holds.
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PROOF
Wewill prove parts of the first and third properties and leave the remaining prop-
erties to Exercise 6. Let a, b, c ∈ ℤ. This means that there exist natural numbers
m, n , r, s, u, and v such that a = [(m, n)], b = [(r, s)], and c = [(u, v)]. Then,

a + b + c = [(m, n)] + [(r, s)] + [(u, v)]
= [(m + r, n + s)] + [(u, v)]
= [(m + r + u, n + s + v)]
= [(m + [r + u] , n + [s + v])]
= [(m, n)] + [(r + u, s + v)]
= [(m, n)] + ([(r, s)] + [(u, v)])
= a + (b + c)

and
abc = [(m, n)] ⋅ [(r, s)] ⋅ [(u, v)]

= [(mr + ns, ms + nr)] ⋅ [(u, v)]
= [(u [mr + ns] + v [ms + nr] , v [mr + ns] + u [ms + nr])]
= [(umr + uns + vms + vnr, vmr + vns + ums + unr)]
= [(m [ru + sv] + n [su + rv] , m [su + rv] + n [ru + sv])]
= [(m, n)] ⋅ [(ru + sv, su + rv)]
= [(m, n)] ⋅ ([(r, s)] ⋅ [(u, v)])
= a(bc).

To prove that every element of ℤ has an additive inverse, notice that
[(m, n)] + [(n, m)] = [(m + n, n + m)] = [(0, 0)].

Therefore, if a = [(m, n)], the additive inverse of a is [(n, m)].
For all n ∈ ℤ, denote the additive inverse of n by −n, and for all m, n, r, s ∈ !, define

[(m, n)] − [(r, s)] = [(m, n)] + [(s, r)].

Rational Numbers

As the integers were built using !, so the set of rational numbers will be built using ℤ.
Its definition is motivated by the behavior of fractions in Q. For instance,

2
3
= 8
12

because 2 ⋅ 12 = 3 ⋅ 8. Imagining that the ordered pair (m, n) represents the fraction
m∕n, we define an equivalence relation. Notice that this is essentially the relation from
Example 4.2.5. Notice that ℤ is defined using addition (Definition 5.3.1) while the
rational numbers are defined using multiplication.
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DEFINITION 5.3.6

Let S be the equivalence relation on ℤ × (ℤ ⧵ {0}) defined by
(m, n)S (m′, n′) if and only if mn′ = m′n.

Define ℚ = [ℤ × (ℤ ⧵ {0})]∕S to be the set of rational numbers.
Using Definition 5.3.6, we associate elements of Q with elements of ℚ:

Q ℚ
⋮ ⋮
−2 [(−2, 1)]
−1 [(−1, 1)]
0 [(0, 1)]
1 [(1, 1)]
2 [(2, 1)]
⋮ ⋮

Q ℚ
⋮ ⋮
1∕2 [(1, 2)]
2∕3 [(2, 3)]
3∕4 [(3, 4)]
4∕5 [(4, 5)]
5∕6 [(5, 6)]
⋮ ⋮

Notice that since 1, 2 ∈ ℤ, the equivalence class [(1, 2)] is the name for
[([(1, 0)]R, [(2, 0)]R]S = [[({∅},∅)]R, [({∅, {∅}},∅)]R]S ,

where R is the relation of Definition 5.3.1. Also,
[(1, 2)] = [(2, 4)] = [(3, 6)] = · · · .

We next define a partial order on ℚ.
DEFINITION 5.3.7

For all [(m, n)], [(m′, n′)] ∈ ℚ, define
[(m, n)] ≤ [(m′, n′)] if and only if mn′ ≤ nm′

and
[(m, n)] < [(m′, n′)] if and only if mn′ < nm′.

When working with ℚ, we often denote [(m, n)] by m∕n or mn and [(m, 1)] by m. Thus,
since 2∕3 = [(2, 3)] and 7∕8 = [(7, 8)], we conclude that 2∕3 < 7∕8 because 2⋅8 < 3⋅7.

As ! can be embedded in ℤ, so ℤ can be embedded in ℚ. The function that can be
used is

 : ℤ →
[

ℤ × (ℤ ⧵ {0})
]

∕S

defined by
 (n) = [(n, 1)]. (5.9)

(See Exercise 2) Using the function ' (5.8), we see that ! can be embedded in ℚ via
the order isomorphism  ◦ '.

Since (ℚ,≤) has no least element (Exercise 3), it is not well-ordered. However, it is
a chain (Exercise 11).
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THEOREM 5.3.8

(ℚ,≤) is a linear order.
Lastly, we define two operations on ℚ that represent the standard operations of +

and ⋅ on Q.
DEFINITION 5.3.9

Let [(m, n)], [(m′, n′)] ∈ ℚ.
∙ [(m, n)] + [(m′, n′)] = [(mn′ + m′n, nn′)].

∙ [(m, n)] ⋅ [(m′, n′)] = [(mm′, nn′)].

That + and ⋅ as given in Definition 5.3.9 are binary operations is left to Exercise 13.
As examples of these two operations, the equation in ℚ

[(1, 3)] + [(3, 4)] = [(1 ⋅ 4 + 3 ⋅ 3, 3 ⋅ 4)] = [(13, 12)]

corresponds to the equation in Q
1
3
+ 3
4
= 4
12
+ 9
12

= 13
12

and the equation in ℚ
[(1, 3)] ⋅ [(3, 4)] = [(1 ⋅ 3, 3 ⋅ 4)] = [(3, 12)] = [(1, 4)]

corresponds to the equation in Q
1
3
⋅
3
4
= 3
12

= 1
4
.

We follow the same order of operations with + and ⋅ on ℚ as on ℤ and also write
mn for m ⋅ n.

THEOREM 5.3.10

∙ The binary operations + and ⋅ on ℚ are associative and commutative.

∙ [(0, 1)] is the additive identity, and [(1, 1)] is the multiplicative identity.

∙ Every rational number has an additive inverse, and every element ofℚ⧵{[(0, 1)]}
has a multiplicative inverse.

∙ The distributive law holds.
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PROOF
Since [(m, n)] ⋅ [(1, 1)] = [(m ⋅ 1, n ⋅ 1)] = [(m, n)] for all [(m, n)] ∈ ℚ and
multiplication is commutative, the multiplicative identity of ℚ is [(1, 1)]. Also,
because m ≠ 0 and n ≠ 0 implies that

[(m, n)] ⋅ [(n, m)] = [(mn, nm)] = [(1, 1)],

every element of ℚ ⧵ [(0, 1)] has a multiplicative inverse. The other properties
are left to Exercise 14.

For all a, b ∈ ℚwith b ≠ 0, denote the additive inverse of a by−a and themultiplicative
inverse of b by b−1.

Actual Numbers

We now use the elements of !, ℤ, and ℚ as if they were the actual elements of N, Z,
and Q. For example, we understand the formula n ∈ ℤ to mean that n is an integer
of Definition 5.3.1 with all of the properties of n ∈ Z. Also, when we write that the
formula p(n) is satisfied by some rational number a, we interpret this to mean that p(a)
with a ∈ ℚ where a has all of the properties of a ∈ Q. This allows us to use the set
properties of a natural number, integer, or rational number when needed yet also use
the results we know concerning the actual numbers. That the partial orders and binary
operations defined on !, ℤ, and ℚ have essentially the same properties as those on N,
Z, and Q allows for this association of properties to be legitimate.
Exercises

1. Prove that the function ' (5.8) is an order isomorphism using the order of Defini-
tion 5.3.2.
2. Prove that the function  (5.9) is an order isomorphism using the order of Defini-
tion 5.3.7.
3. Show that (ℤ,≤) and (ℚ,≤) do not have least elements.
4. Prove that ≤ is transitive on ℤ.
5. Prove that + is well-defined on ℤ.
6. Complete the remaining proofs of the properties of Theorem 5.3.5.
7. Show that every nonempty subset of ℤ− = {n : n ∈ ℤ ∧ n < 0} has a greatest
element.
8. Let m, n ∈ ℤ and k ∈ ℤ− (Exercise 7) Prove that if m ≤ n, then nk ≤ mk.
9. Prove that for every m, n ∈ ℤ, if mn = 0, then m = 0 or n = 0. Show that this same
result also holds for ℚ.
10. The cancellation law for the integers states that for all m, n, k ∈ ℤ,

∙ if m + k = n + k, then m = n,
∙ if mk = nk and k ≠ 0, then m = n.
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Prove that the cancellation law holds for ℤ. Prove that a similar law holds for ℚ.
11. Prove that (ℚ,≤) is a chain.
12. Demonstrate that every nonempty set of integers with a lower bound with respect
to ≤ has a least element.
13. Show that + and ⋅ as given in Definition 5.3.9 are binary operations on ℚ.
14. Prove the remaining parts of Theorem 5.3.10.
15. Let a, b, c, d ∈ ℚ. Prove.

(a) If 0 ≤ a ≤ c and 0 ≤ b ≤ d, then ab ≤ cd.
(b) If 0 ≤ a < c and 0 ≤ b < d, then ab < cd.

16. Let a, b ∈ ℚ. Prove that if b < 0, then a + b < a.
17. Let a, b ∈ ℚ. Prove that if a ≥ 0 and b < 1, then ab ≤ a.
18. Prove that between any two rational numbers is a rational number. This means that
ℚ is dense. Show that this is not the case for ℤ.
19. Generalize the definition of exponentiation given in Exercise 5.2.17 to ℤ. Prove
that this defines a one-to-one function ℤ × (ℤ+ ∪ {0}) → ℤ. Does the proof require
recursion (Theorem 5.2.14)?
20. Let m, n, k ∈ ℤ. Assume that m ≤ n. Demonstrate the following.

(a) m + k ≤ n + k.
(b) mk ≤ nk if 0 ≤ k.
(c) nk ≤ mk if k < 0.
(d) mk ≤ nk if k ≥ 0.

21. Let ' : ! → ℤ be the embedding defined by (5.8). Define f : ! × ! → ! by
f (m, n) = mn and g : ℤ× (ℤ+ ∪ {0}) → ℤ by g(u, v) = uv. Prove that for all m, n ∈ !,
we have that g('(m), '(n)) = '(f (m, n)). Explain the significance of this result.

5.4 MATHEMATICAL INDUCTION

Suppose that we want to prove p(n) for all integers n greater than or equal to some n0.Our previous method (Section 2.4) is to take an arbitrary n ≥ n0 and try to prove p(n).
If this is not possible, we might be tempted to try proving p(n) for each n individually.
This is impossible because it would take infinitely many steps. Instead, we combine
the results of Sections 5.2 and 5.3 and use the next theorem.

THEOREM 5.4.1 [Mathematical Induction 1]

Let p(k) be a formula. For any n0 ∈ ℤ, if
p(n0) ∧ ∀n ∈ ℤ[n ≥ n0 ∧ p(n)→ p(n + 1)],

then
∀n ∈ ℤ[n ≥ n0 → p(n)].
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PROOF
Assume p(n0) and that p(k) implies p(k + 1) for all integers k ≥ n0. Define

A = {k ∈ ! : p(n0 + k)}.
Notice that 0 ∈ A ⇔ p(n0), 1 ∈ A ⇔ p(n0 + 1), and so on. To prove p(k) for all
integers k ≥ n0, we show that A is inductive.

∙ By hypothesis, 0 ∈ A because p(n0).
∙ Assume n ∈ A. This implies that p(n0 + n). Therefore, p(n0 + n + 1), so
n + 1 ∈ A.

Theorem 5.4.1 gives rise to a standard proof technique known as mathematical
induction. First, prove p(n0). Then, show that p(n) implies p(n + 1) for every integer
n ≥ n0. Often an analogy of dominoes is used to explain this. Proving p(n0) is liketipping over the first domino, and then proving the implication shows that the dominoes
have been set properly. This means that by modus ponens, if p(n0 + 1) is true, then
p(n0 + 2) is true, and so forth, each falling like dominoes:

p(n0)
p(n0)→ p(n0 + 1) ∴ p(n0 + 1)

p(n0 + 1) → p(n0 + 2) ∴ p(n0 + 2) · · ·

This two-step process is characteristic of proofs by mathematical induction. So
much so, the two stages have their own terminology.

∙ Proving p(n0) is called the basis case. It is typically the easiest part of the proofbut should, nonetheless, be explicitly shown.
∙ Proving that p(n) implies p(n + 1) is the induction step. For this, we typically
use direct proof, assuming p(n) to show p(n + 1). The assumption is called the
induction hypothesis.

Often induction is performed to prove a formula for all positive integers, so to represent
this set, define

ℤ+ = {1, 2, 3,…}.

EXAMPLE 5.4.2

Prove p(k) for all k ∈ ℤ+, where

p(k) := 12 + 22 + · · · + k2 = k(k + 1)(2k + 1)
6

.

Proceed by mathematical induction.
∙ The basis case p(1) holds because

1(1 + 1)(2 ⋅ 1 + 1)
6

=
1(2)(3)
6

= 12.
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∙ Now for the induction step, assume

12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
. (5.10)

This is the induction hypothesis. We must show that the equation holds for
n + 1. Adding (n + 1)2 to both sides of (5.10) gives

12 + 22 + · · · + n2 + (n + 1)2 =
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
(n + 1) [n(2n + 1) + 6(n + 1)]

6

=
(n + 1)(2n2 + 7n + 6)

6

=
(n + 1)(n + 2)(2n + 3)

6

=
(n + 1)([n + 1] + 1)(2[n + 1] + 1)

6
.

EXAMPLE 5.4.3

Let x be a positive rational number. To prove that for any k ∈ ℤ+,
(x + 1)k ≥ xk + 1,

we proceed by mathematical induction.
∙ (x + 1)1 = x + 1 = x1 + 1.

∙ Let n ∈ ℤ+ and assume that (x + 1)n ≥ xn + 1. By multiplying both sides
of the given inequality by x + 1, we have

(x + 1)n(x + 1) ≥ (xn + 1)(x + 1)
= xn+1 + xn + x + 1

≥ xn+1 + 1.

The first inequality is true by induction (that is, by appealing to the induc-
tion hypothesis) and since x+ 1 is positive, and the last one holds because
x ≥ 0.

EXAMPLE 5.4.4

Recursively define a sequence of numbers,
a1 = 3,
an = 2an−1 for all n ∈ ℤ such that n > 1.
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The sequence is
a1 = 3, a2 = 6, a3 = 12, a4 = 24, a5 = 48,… ,

and we conjecture that ak = 3 ⋅ 2k−1 for all positive integers k. We prove this by
mathematical induction.
∙ For the basis case, a1 = 3 ⋅ 20 = 3.
∙ Let n > 1 and assume an = 3 ⋅ 2n−1. Then,

an+1 = 2an = 2 ⋅ 3 ⋅ 2n−1 = 3 ⋅ 2n.

EXAMPLE 5.4.5

Use mathematical induction to prove that k3 < k! for all integers, k ≥ 6.
∙ First, show that the inequality holds for n = 6:

63 = 216 < 720 = 6!.

∙ Assume n3 < n! with n ≥ 6. The induction hypothesis yields three in-
equalities. Namely,

3n2 < n ⋅ n2 ≤ n!,
3n < n ⋅ n < n3 ≤ n!,

and
1 < n!.

Therefore,
(n + 1)3 = n3 + 3n2 + 3n + 1

< n! + n! + n! + n!
= 4n!
< (n + 1)n!
= (n + 1)!.

Combinatorics

We now use mathematical induction to prove some basic results from two areas of
mathematics. The first is combinatorics, the study of the properties that sets have
based purely on their size.

A permutation of a given set is an arrangement of the elements of the set. For
example, the number of permutations of {a, b, c, d, e, f} is 720. If we were to write all
of the permutations in a list, it would look like the following:
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a b c d e f
a b c d f e
a b c e d f

⋮
f e d c a b
f e d c b a

We observe that 6! = 720 and hypothesize that the number of permutations of a set
with k elements is k!. To prove it, we use mathematical induction.

∙ There is only one way to write the elements of a singleton. Since 1! = 1, we have
proved the basis case.

∙ Assume that the number of permutations of a set with n ≥ 1 elements is n!. Let
A = {a1, a2,… , an+1} be a set with n + 1 elements. By induction, there are n!
permutations of the set {a1, a2,… , an}. After writing the permutations in a list,
notice that there are n + 1 columns before, between, and after each element of
the permutations:

a1 a2 … an
a1 a2 … an−1
⋮ ⋮ ⋮
an an−1 … a1

To form the permutations of A, place an+1 into the positions of each empty col-
umn. For example, if an+1 is put into the first column, the following permutations
are obtained:

an+1 a1 a2 … an
an+1 a1 a2 … an−1
⋮ ⋮ ⋮ ⋮
an+1 an an−1 … a1

Since there are n! rows with n + 1 ways to add an+1 to each row, we conclude
that there are (n + 1)n! = (n + 1)! permutations of A.

This argument proves the first theorem.
THEOREM 5.4.6

Let n ∈ ℤ+. The number of permutations of a set with n elements is n!.
Suppose that we do not want to rearrange the entire set but only subsets of it. For

example, let A = {a, b, c, d, e}. To see all three-element permutations of A, look at the
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following list:
abc acb bac bca cab cba
abd adb bad bda dab dba
abe aeb bae bea eab eba
acd adc cad cda dac dca
ace aec cae cea eac eca
ade aed dae dea ead eda
bcd bdc cbd cdb dbc dcb
bce bec ceb cbe ebc ecb
bde bed dbe deb ebd edb
cde ced dce dec ecd edc

There are 60 arrangements because there are 5 choices for the first entry. Once that is
chosen, there are only 4 left for the second, and then 3 for the last. We calculate that as

60 = 5 ⋅ 4 ⋅ 3 = 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1
2 ⋅ 1

= 5!
(5 − 3)! .

Generalizing, we define for all n, r ∈ !,

nPr =
n!

(n − r)! ,

and we conclude the following theorem.
THEOREM 5.4.7

Let r, n ∈ ℤ+. The number of permutations of r elements from a set with n
elements is nPr.
Now suppose that we only want to count subsets. For example, A = {a, b, c, d, e}

has 10 subsets of three elements. They are the following:
{a, b, c} {a, b, d} {a, b, e} {a, c, d} {a, c, e}
{a, d, e} {b, c, d} {b, c, e} {b, d, e} {c, d, e}

The number of subsets can be calculated by considering the next grid.
abc acb bac bca cab cba
abd adb bad bda dab dba
abe aeb bae bea eab eba
acd adc cad cda dac dca
ace aec cae cea eac eca
ade aed dae dea ead eda
bcd bdc cbd cdb dbc dcb
bce bec ceb cbe ebc ecb
bde bed dbe deb ebd edb
cde ced dce dec ecd edc
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3! columns

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

10 rows
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There are 5P3 permutations with three elements from A. They are found as the entries
in the grid. However, since we are looking at subsets, we do not want to count abc
as different from acb because {a, b, c} = {a, c, b}. For this reason, all elements in any
given row of the grid are considered as one subset. Each row has 6 = 3! entries because
that is the number of permutations of a set with three elements. Hence, multiplying the
number of rows by the number of columns gives

5P3 = 10(3!).
Therefore,

5P3
3! = 5!

3!(5 − 3)! =
5!
3!2! = 10.

A generalization of this calculation leads to the formula for the arbitrary binomial
coefficient,

(

n
r

)

= n!
r!(n − r)! ,

where n, r ∈ !. Read (n
r

) as “n choose r.” A generalization of the argument leads to
the next theorem.

THEOREM 5.4.8

Let n, r ∈ ℤ+. The number of subsets of r elements from a set with n elements
is (nr

).
When we expand (x + 1)3, we find that

(x + 1)3 = x3 + 3x2 + 3x2 + 1 =
3
∑

r=0

(

3
r

)

x3−r1r.

To prove this for any binomial (x+ y)n, we need the following equation. It was proved
by Blaise Pascal (1653). The proof is Exercise 7.

LEMMA 5.4.9 [Pascal’s Identity]

If n, r ∈ ! so that n ≥ r,
(

n
r

)

+
(

n
r − 1

)

=
(

n + 1
r

)

.

THEOREM 5.4.10 [Binomial Theorem]

Let n ∈ ℤ+. Then,
(x + y)n =

n
∑

r=0

(

n
r

)

xn−ryr.
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PROOF
∙ Since (10

)

=
(1
1

)

= 1,

(x + y)1 =
(

1
0

)

x +
(

1
1

)

y =
1
∑

r=0

(

1
r

)

x1−ryr.

∙ Assume for k ∈ ℤ+,
(x + y)k =

k
∑

r=0

(

k
r

)

xk−ryr.

Then,
(x + y)k+1 = (x + y)(x + y)k = (x + y)

k
∑

r=0

(

k
r

)

xk−ryr.

Multiplying the (x + y) term through the summation yields
k
∑

r=0

(

k
r

)

xk−r+1yr +
k
∑

r=0

(

k
r

)

xk−ryr+1.

Taking out the (k + 1)-degree terms and shifting the index on the second sum-
mation gives

xk+1 +
k
∑

r=1

(

k
r

)

xk−r+1yr +
k
∑

r=1

(

k
r − 1

)

xk−r+1yr + yn+1,

which using Pascal’s identity (Lemma 5.4.9) equals

xk+1 +
k
∑

r=1

(

k + 1
r

)

xk−r+1yr + yk+1,

and this is
k+1
∑

r=0

(

k + 1
r

)

xk+1−ryr.

Euclid’s Lemma

Our second application of mathematical induction comes from number theory. It is the
study of the greatest common divisor (Definition 3.3.11). We begin with a lemma.

LEMMA 5.4.11

Let a, b, c ∈ ℤ such that a ≠ 0 or b ≠ 0. If a ∣ bc and gcd(a, b) = 1, then a ∣ c.
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PROOF
Assume a ∣ bc and gcd(a, b) = 1. Then, bc = ak for some k ∈ ℤ. By Theo-
rem 4.3.32, there exist m, n ∈ ℤ such that

1 = ma + nb.

Therefore, a ∣ c because
c = cma + cnb = cma + nak = a(cm + nk).

Suppose that p ∈ ℤ is a prime (Example 2.4.18) that does not divide a. We show
that gcd(a, p) = 1. Take d > 0 and assume d ∣ a and d ∣ p. Since p is prime, d = 1 or
d = p. Since p - a, we conclude that d must equal 1, which means gcd(a, p) = 1. Use
this to prove the next result attributed to Euclid (Elements VII.30).

THEOREM 5.4.12 [Euclid’s Lemma]

An integer p > 1 is prime if and only if p ∣ ab implies p ∣ a or p ∣ b for all
a, b ∈ ℤ.

PROOF
∙ Let p be prime. Suppose p ∣ ab but p - a. Then, gcd(a, p) = 1. Therefore, p ∣ b
by Theorem 5.4.11.

∙ Let p > 1. Suppose p satisfies the condition,
∀a∀b(p ∣ ab→ p ∣ a ∨ p ∣ b).

Assume p is not prime. This means that there are integers c and d so that p = cd
with 1 < c ≤ d < p. Hence, p ∣ cd. By hypothesis, p ∣ c or p ∣ d. However,
since c, d < p, p can divide neither c nor d. This is a contradiction. Hence, p
must be prime.

Since 6 divides 3 ⋅ 4 but 6 - 3 and 6 - 4, the lemma tells us that 6 is not prime. On
the other hand, if p is a prime that divides 12, then p divides 4 or 3. This means that
p = 2 or p = 3.

The next theorem is a generalization of Euclid’s lemma. Its proof uses mathematical
induction.

THEOREM 5.4.13

Let p be prime and ai ∈ ℤ for i = 0, 1,… , n − 1. If p ∣ a0a1 · · · an−1, then p ∣ ajfor some j = 0, 1,… , n − 1.
PROOF

∙ The case when n = 1 is trivial because p divides a0 by definition of the product.
∙ Assume if p ∣ a0a1 · · · an−1, then p ∣ aj for some j = 0, 1,… , n − 1. Suppose
p ∣ a0a1 · · · an. Then, by Lemma 5.4.12,

p ∣ a0a1 · · · an−1 or p ∣ an.
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If p ∣ an, we are done. Otherwise, p divides a0a1 · · · an−1. Hence, p divides oneof the ai by induction.

Exercises

1. Let n ∈ ℤ+. Prove.
(a) 1 + 2 + 3 + · · · + n =

n(n + 1)
2

(b) 1 + 3 + 5 + · · · + (2n − 1) = n2

(c) 12 + 32 + 52 + · · · + (2n − 1)2 =
n(2n − 1)(2n + 1)

3

(d) 13 + 23 + 33 + · · · + n3 =
[

n(n + 1)
2

]2

(e) 1 + r + r2 + · · · + rn = 1 − rn+1
1 − r

(r ≠ 1)
(f) 1 ⋅ 1! + 2 ⋅ 2! + · · · + n ⋅ n! = (n + 1)! − 1
(g) 1

2! +
2
3! + · · · +

n
(n + 1)! = 1 −

1
(n + 1)!

(h) 2 ⋅ 6 ⋅ 10 ⋅ 14 ⋅ · · · ⋅ (4n − 2) =
(2n)!
n!

2. Prove for all positive integers n.
(a)

n
∑

i=1
i(i + 1) =

n(n + 1)(n + 2)
3

(b)
n
∑

i=1

1
(2i − 1)(2i + 1)

= n
2n + 1

3. Let n ∈ ℤ+. Prove.
(a) n < 2n

(b) n! ≤ nn

(c)
n
∑

i=1

1
i2

≤ 2 − 1
n

(d) 1
2
+ 2
22
+ 3
23
+ · · · + n

2n
≤ 2 − n

2n

4. Let n ∈ ℤ. Prove.
(a) n2 < 2n for all n ≥ 5.
(b) 2n < n! for all n ≥ 4.
(c) n2 < n! for all n ≥ 4.

5. For n ∈ ℤ+, prove that if A has n elements, P(A) has 2n elements.
6. Prove that the number of lines in a truth table with n propositional variables is 2n.
7. Demonstrate Pascal’s identity (Lemma 5.4.9).
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8. For all integers n ≥ r ≥ 0, prove the given equations.
(a)

(

n
0

)

=
(

n
n

)

= 1.

(b)
(

n
r

)

=
(

n
n − r

)

.
9. Let n, r ∈ ℤ+ with n ≥ r. Prove.

(a)
(

r
r

)

+
(

r + 1
r

)

+ · · · +
(

n
r

)

=
(

n + 1
r + 1

)

(b) 12 + 32 + 52 + · · · + (2n − 1)2 =
(

2n + 1
3

)

10. Let n ≥ 2 be an integer and prove the given equations.
(a)

n
∑

r=1
r
(

n
r

)

= n2n−1

(b)
n
∑

r=1
(−1)r−1r

(

n
r

)

= 0

11. Let n and r be positive integers and n ≥ r. Use induction to show the given
equations.

(a)
(

r
r

)

+
(

r + 1
r

)

+ · · · +
(

n
r

)

=
(

n + 1
r + 1

)

(b) 12 + 32 + 52 + · · · + (2n − 1)2 =
(

2n + 1
3

)

12. Prove the following for all n ∈ !.
(a) 5 ∣ n5 − n
(b) 9 ∣ n3 + (n + 1)3 + (n + 2)3

(c) 8 ∣ 52n + 7
(d) 5 ∣ 33n+1 + 2n+1

13. If p is prime and a and b are positive integers such that a + b = p, prove that
gcd(a, b) = 1.
14. Prove for all n ∈ ℤ+, there exist n consecutive composite integers (Example 2.4.18)
by showing that (n + 1)! + 2, (n + 1)! + 3,… , (n + 1)! + n + 1 are composite.
15. Prove.

(a) If a ≠ 0, then a ⋅ gcd(b, c) = gcd(ab, ac).
(b) Prove if gcd(ai, b) = 1 for i = 1,… , n, then gcd(a1 ⋅ a2 · · · an, b) = 1).

16. For k ∈ ℤ+, let a0, a1,… , ak−1 ∈ !, not all equal to zero. Define
g = gcd(a0, a1,… , ak−1)

to mean that g is the greatest integer such that g ∣ ai for all i = 0, 1,… , k−1. Assuming
k ≥ 3, prove the given equations.
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(a) gcd(a0, a1,… , ak−1) = gcd(a0, a1,… , ak−3, gcd(ak−2, ak−1))
(b) gcd(ca0, ca1,… , cak−1) = c gcd(a0, a1,… , ak−1) for all integers c ≠ 0

5.5 STRONG INDUCTION

Suppose we want to find an equation for the terms of a sequence defined recursively in
which each term is based on two ormore previous terms. To prove that such an equation
is correct, we modify mathematical induction. Remember the domino picture that we
used to explain how mathematical induction works (page 258). The first domino is
tipped causing the second to fall, which in turn causes the third to fall. By the time the
sequence of falls reaches the n + 1 domino, n dominoes have fallen. This means that
sentences p(1) through p(n) have been proved true. It is at this point that p(n + 1) is
proved. This is the intuition behind the next theorem. It is sometimes called strong
induction.

THEOREM 5.5.1 [Mathematical Induction 2]

Let p(k) be a formula. For any n0 ∈ ℤ, if
p(n0) ∧ ∀k(k ∈ ! ∧ [∀l(l ∈ ! ∧ [l ≤ k→ p(n0 + l)])→ p(n0 + k + 1)]),

then
∀k[k ∈ ℤ ∧ k ≥ n0 → p(k)].

PROOF
Assume p(n0) and

p(n0) ∧ p(n0 + 1) ∧ · · · ∧ p(n0 + k)→ p(n0 + k + 1) (5.11)
for k ∈ !. Define

q(k) := p(n0) ∧ p(n0 + 1) ∧ · · · ∧ p(n0 + k).
We proceed with the induction.

∙ Since p(n0) holds, we have q(0).
∙ Assume q(n) with n ≥ 0. By definition of q(n), we have p(n0) through
p(n0 + n). Thus, p(n0 + n + 1) by (5.11) from which q(n + 1) follows.

Therefore, q(n) is true for all n ∈ ! (Theorem 5.4.1). Hence, p(n) for all integers
n ≥ n0.

Fibonacci Sequence

Leonardo of Pisa (known as Fibonacci) in his 1202 work Liber abaci posed a problem
about how a certain population of rabbits increases with time (Fibonacci and Sigler
2002). Each rabbit that is at least 2 months old is considered an adult. It is a young
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rabbit if it is a month old. Otherwise, it is a baby. The rules that govern the population
are as follows:

∙ No rabbits die.
∙ The population starts with a pair of adult rabbits.
∙ Each pair of adult rabbits will bear a new pair each month.

The population then grows according to the following table:

Month Adult Pairs Young Pairs Baby Pairs
1 1 0 1
2 1 1 1
3 2 1 2
4 3 2 3
5 5 3 5
6 8 5 8

It appears that the number of adult (or baby) pairs at month n is given by the sequence,
1, 1, 2, 3, 5, 8, 13, 21, 34,… .

This is known as the Fibonacci sequence, and each term of the sequence is called a
Fibonacci number. Let Fn denote the nth term of the sequence. So

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8,… .

Each term of the sequence can be calculated recursively by
F1 = 1,
F2 = 1,
Fn = Fn−1 + Fn−2 (n > 2).

(5.12)

Since we have only checked a few terms, we have not proved that Fn is equal to the
number of adult pairs in the nth month. To show this, we use strong induction. Since
the recursive definition starts by explicitly defining F1 and F2, the basis case for the
induction will prove that the formula holds for n = 1 and n = 2.

∙ From the table, in each of the first 2 months, there is exactly one adult pair of
rabbits. This coincides with F1 = 1 and F2 = 1 in (5.12).

∙ Let n > 2, and assume that Fk equals the number of adult pairs in the kth month
for all k ≤ n. Because of the third rule, the number of pairs of adults in any
month is the same as the number of adult pairs in the previous month plus the
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number of baby pairs 2 months prior. Therefore,
# of adult pairs
in month n + 1 = # of adult pairs

in month n + # of young pairs
in month n

= # of adult pairs
in month n + # of baby pairs

in month n − 1
= # of adult pairs

in month n + # of adult pairs
in month n − 1

= Fn + Fn−1
= Fn+1.

It turns out that the Fibonacci sequence is closely related to another famous object
of study in the history of mathematics. Letting n ≥ 1, define

an =
Fn+1
Fn

.

The first seven terms of this sequence are
a1 = 1∕1 = 1,
a2 = 2∕1 = 2,
a3 = 3∕2 = 1.5,
a4 = 5∕3 ≈ 1.667,
a5 = 8∕5 = 1.6,
a6 = 13∕8 = 1.625,
a7 = 21∕13 ≈ 1.615.

This sequence has a limit that we call �. To find this limit, notice that
Fn+1
Fn

=
Fn + Fn−1

Fn
= 1 +

Fn−1
Fn

.

Because an−1 = Fn∕Fn−1 when n > 1,

an = 1 +
1
an−1

,

and therefore,
an − 1 −

1
an−1

= 0.

Because
lim
n→∞

an = lim
n→∞

an−1 = �,

we conclude that
�2 − � − 1 = 0. (5.13)
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Therefore, (1 ±√

5)∕2 are the solutions to (5.13), but since Fn+1∕Fn > 0, we take thepositive value and find that
� =

1 +
√

5
2

.

The number � is called the golden ratio. It was considered by the ancient Greeks to
represent the ratio of the sides of the most beautiful rectangle.

EXAMPLE 5.5.2

Prove Fn ≤ �n−1 when n ≥ 2 using strong induction.
∙ Since F2 = 1 < �1 ≈ 1.618, the inequality holds for n = 2.
∙ Let n ≥ 3, and assume that Fk ≤ �k−1 for all k such that 2 ≤ k ≤ n.
Because �−1 = (√5 − 1)∕2 and �−2 = (3 −√

5)∕2,
�−1 + �−2 = 1.

Therefore, the induction hypothesis gives
Fn+1 = Fn + Fn−1 ≤ �n−1 + �n−2 = �n(�−1 + �−2) = �n.

Unique Factorization

Theorem 5.4.13 states that if a prime divides an integer, it divides one of the factors of
the integer. It appears reasonable that any integer can then be written as a product that
includes all of its prime divisors. For example, we can write 126 = 2 ⋅ 3 ⋅ 3 ⋅ 7, and this
is essentially the only way in which we can write 126 as a product of primes. All of
this is summarized in the next theorem. It is also known as the fundamental theorem
of arithmetic. It is the reason the primes are important. They are the building blocks
of the integers.

THEOREM 5.5.3 [Unique Factorization]

If n > 1, there exists a unique sequence of primes p0 ≤ p1 ≤ · · · ≤ pk (k ∈ !)
such that n = p0p1 · · · pk.

PROOF
Prove existence with strong induction on n.

∙ When n = 2, we are done since 2 is prime.
∙ Assume that k can be written as the product of primes as described above
for all k such that 2 ≤ k < n. If n is prime, we are done as in the basis
case. So suppose n is composite. Then, there exist integers a and b such
that n = ab and 1 < a ≤ b < n. By the induction hypothesis, we can write

a = q0q1 · · · qu
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and
b = r0r1 · · · rv,

where the qi and rj are primes. Now place these primes together in increas-
ing order and relabel them as

p0 ≤ p1 ≤ · · · ≤ pk

with k = u + v. Then, n = p0p1 · · · pk as desired.
For uniqueness, suppose that there are two sets of primes

p0 ≤ p1 ≤ · · · ≤ pk and q0 ≤ q1 ≤ · · · ≤ ql

so that
n = p0p1 · · · pk = q0q1 · · · ql.

By canceling, if necessary, we can assume the sides have no common primes. If
the cancellation yields 1 = 1, the sets of primes are the same. In order to obtain a
contradiction, assume that there is at least one prime remaining on the left-hand
side. Suppose it is p0. If the product on the right equals 1, then p0 ∣ 1, which is
impossible. If there are primes remaining on the right, p0 divides one of them
by Lemma 5.4.12. This is also a contradiction, since the sides have no common
prime factors because of the cancellation. Hence, the two sequences must be the
same.

Unique Factorization allows us to make the following definition.
DEFINITION 5.5.4

Let n ∈ ℤ+. If p0, p1,… , pk−1 are distinct primes and r0, r1,… , rk−1 are naturalnumbers such that
n = pr00 p

r1
1 · · · p

rk−1
k−1 ,

then pr00 pr11 · · · prk−1k−1 is called a prime power decomposition of n.

EXAMPLE 5.5.5

Consider the integer 360. It has 23 ⋅32 ⋅51 as a prime power decomposition. If the
exponents are limited to positive integers, the expression is unique. In this sense,
we can say that 23 ⋅ 32 ⋅ 51 is the prime power decomposition of 360. However,
there are times when primes need to be included in the product that are not factors
of the integer. By setting the exponent to zero, these primes can be included. For
example, we can also write 360 as 23 ⋅ 32 ⋅ 51 ⋅ 70.

EXAMPLE 5.5.6

Suppose n ∈ ℤ such that n > 1. Use unique factorization (Theorem 5.5.3)
to prove that n is a perfect square if and only if all powers in a prime power
decomposition of n are even.
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∙ Let n be a perfect square. This means that n = k2 for some integer k > 1.
Write a prime power decomposition of k,

k = pr00 p
r1
1 · · · p

rl−1
l−1 .

Therefore,
n = k2 = p2r00 p2r11 · · · p2rl−1l−1 .

∙ Assume all the powers are even in a prime power decomposition of n.
Namely,

n = pr00 p
r1
1 · · · p

rl−1
l−1 ,

where there exists ui ∈ ℤ so that ri = 2ui for i = 0, 1,… , l − 1. Thus,

n = p2u00 p2u11 · · · p2ul−1l−1 =
(

pu00 p
u1
1 · · · p

ul−1
l−1

)2 ,

a perfect square.

Exercises

1. Given each recursive definition, prove the formula for an holds for all positive inte-gers n.
(a) If a1 = −1 and an = −an−1, then an = (−1)n.
(b) If a1 = 1 and an = 1∕3an−1, then an = (1∕3)n−1.
(c) If a1 = 0, a2 = −6, and an = 5an−1 − 6an−2, then

an = 3 ⋅ 2n − 2 ⋅ 3n.

(d) If a1 = 4, a2 = 12, and an = 4an−1 − 2an−2, then

an = (2 +
√

2)n + (2 −
√

2)n.

(e) If a1 = 1, a2 = 5, and an1 = an + 2an−1 for all n > 2, then
an = 2n + (−1)n.

(f) If a1 = 3, a2 = −3, a3 = 9, and an = an−1 + 4an−2 − 4an−3, then
an = 1 − (−2)n.

(g) If a1 = 3, a2 = 10, a3 = 21, and an = 3an−1 − 3an−2 + an−3, then
an = n + 2n2.

2. Let g1 = a, g2 = b, and gn = gn−1 + gn−2 for all n > 2. This sequence is called the
generalized Fibonacci sequence. Show that gn = afn−2 + bfn−1 for all n > 2.
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3. Let n > 0 be an integer. Prove.
(a) Fn+2 > �n

(b)
n
∑

i=1
Fi = Fn+2 − 1

4. Prove that Theorem 5.5.1 implies Theorem 5.4.1.
5. Let � = (1 −√

5)∕2 and demonstrate that Fn = �n − �n
√

5
.

6. Let n ≥ 1 and a ∈ ℤ. Prove.
(a) an+1 − 1 = (a + 1)(an − 1) − a(an−1 − 1).
(b) an − 1 = (a − 1)(an−1 + an−2 + · · · + a + 1).

7. For all n ∈ !, prove that 12 divides n4 − n2 (Definition 2.4.2).
8. Assume e ∣ a and e ∣ b. Write prime power decompositions for a and b:

a = pr00 p
r1
1 · · · p

rk−1
k−1

and
b = ps00 p

s1
1 · · · p

sk−1
k−1 .

Prove that there exist t0, t1,… tk−1 ∈ ! such that
e = pt00 p

t1
1 · · · p

tk−1
k−1 ,

ti ≤ ri, and ti ≤ si for all i = 0, 1,… , k − 1.
9. Prove that a3 ∣ b2 implies a ∣ b for all a, b ∈ ℤ.
10. Let a ∈ ℤ+. Let a have the property that for all primes p, if p ∣ a, then p2 ∣ a.
Prove that a is the product of a perfect square and a perfect cube.
11. Prove that gcd(Fn, Fn+2) = 1 for all n ∈ ℤ+.

5.6 REAL NUMBERS

As ℤ is defined using ! and ℚ is defined using ℤ, the set analog to R is defined using
ℚ. We start with a definition.

DEFINITION 5.6.1

Let (A,4) be a poset. The set B is an initial segment of A when B ⊆ A and
for all a, b ∈ A, if a 4 b and b ∈ B, then a ∈ B. (5.14)

An initial segment B of A is proper if B ≠ A.
The condition (5.14) is called downward closed. Notice that for all a ∈ R, both
(−∞, a) and (−∞, a] are initial segments of (R,≤). A poset is an initial segment of
itself, but it is not proper.
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DEFINITION 5.6.2

Let (A,4) be a poset with b ∈ A. Define
seg4(A, b) = {a ∈ A : a ≺ b}.

For example,
seg≤(R, 5) = (−∞, 5)

in (R,≤), and
seg≤(ℤ, 5) = {… , 0, 1, 2, 3, 4}

in (ℤ,≤). Both of these are proper initial segments. Notice that every initial segment
of ℤ is of the form seg≤(ℤ, n) for some n ∈ ℤ.

Neitherℤ norℚ are well-ordered by≤. If a poset is well-ordered, its initial segments
have a particular form.

LEMMA 5.6.3

If (A,4) is a well-ordered set and B is a proper initial segment of A, there exists
a unique m ∈ A such that B = seg4(A,m).

PROOF
Suppose that (A,4) is well-ordered and B ⊆ A is a proper initial segment. First,
note that A ⧵ B is not empty since B is proper. Thus, A ⧵ B contains a least
element m because 4 well-orders A.

∙ Let a ∈ B, which implies that a ≺ m. Otherwise,mwould be an element of
B because B is downward closed. Hence, a ∈ seg4(A,m), which implies
that B ⊆ seg4(A,m).

∙ Conversely, take a ∈ seg4(A,m), which means a ≺ m. If a ∈ A ⧵ B, then
m 4 a because m is the least element of A ⧵B, so a must be an element of
B by the trichotomy law (Theorem 4.3.21). Thus, seg4(A,B) ⊆ B.

To prove uniqueness, let m′ ∈ A such that m ≠ m′ and B = seg4(A,m′). If
m ≺ m′, then m ∈ seg4(A,m′), and if m′ ≺ m, then m′ ∈ B = seg4(A,m). Bothcases are impossible.

Dedekind Cuts

A basic property of R is that it is complete. This means that
every nonempty set of real numbers with an upper bound

has a real least upper bound

(Definition 4.3.12). For example, the set

A =
{

1 − 1
n
: n ∈ Z+

}



276 Chapter 5 AXIOMATIC SET THEORY

is bounded from above, and its least upper bound is 1. Also,
B = {3, 3.1, 3.14, 3.141, 3.1415, 3.14159,…}

is bounded from above, and its least upper bound is �. Observe that both A and B are
sets of rational numbers. The set A has a rational least upper bound, but B does not.
This shows that the rational numbers are not complete. Intuitively, the picture is that
of a number line. If R is graphed, there are no holes because of completeness, but if
Q is graphed, there are holes. These holes represent the irrational numbers that when
filled, complete the rational numbers resulting in the set of reals. We use this idea to
construct a model of the real numbers from ℚ (Dedekind 1901).

DEFINITION 5.6.4

A set x of rational numbers is a Dedekind cut (or a real number) if x is a subset
of (ℚ,≤) such that

∙ x is nonempty,
∙ x is a proper initial segment of ℚ ,
∙ x does not have a greatest element.

Denote the set of Dedekind cuts by ℝ.
By Lemma 5.6.3, some Dedekind cuts are of the form seg≤(ℚ, a) for some a ∈ ℚ. In
this case, write a = seg≤(ℚ, a). Therefore,ℚ can be embedded inℝ using the function
f : ℚ → ℝ defined by f (a) = a (Exercise 14). The elements of ℝ ⧵ ran(f ) are the
irrational numbers.

EXAMPLE 5.6.5

∙ The Dedekind cut that corresponds to the integer 7 is
7 = seg≤(ℚ, 7).

Note that there is no gap between 7 and ℚ ⧵ 7 = {a ∈ ℚ : a ≥ 7}.
∙ The Dedekind cut x that corresponds to � includes

{3, 3.1, 3.14, 3.141, 3.1415, 3.14159,…}

as a subset. Notice that � ∉ x and � ∉ ℚ ⧵ x because � is not rational. This
means that we imagine a gap between x andℚ⧵x. This gap is where � is located.

Imagine that only the rational numbers have been placed on the number line (Sec-
tion 5.3). For every Dedekind cut x, call the point on the number line where x and
ℚ⧵xmeet a cut. Following our intuition, if the least upper bound of x is an element of
ℚ ⧵ x, there is a point at the cut [Figure 5.1(a)]. This means that x represents a rational
number, a point already on the number line. However, if the least upper bound of x is
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ℚ

x ℚ  x

The cut

(a) A rational number

ℚ

x ℚ  x

The cut

(b) An irrational number

Figure 5.1 The cuts of two types of numbers.

not an element of ℚ ⧵ x, there is no point at the cut [Figure 5.1(b)]. This means that
x represents an irrational number. To obtain all real numbers, a point must be placed
at each cut without a point, filling the entire number line. Therefore, the first step in
showing that ℝ is a suitable model for R is to prove that every set of Dedekind cuts
with an upper bound must must have a least upper bound that is a Dedekind cut. That
is, ℝmust be shown to be complete. To accomplish this, we first define on order on ℝ.

DEFINITION 5.6.6

Let x, y ∈ ℝ. Define x ≤ y if and only if x ⊆ y, and define x < y to mean x ≤ y
and x ≠ y.

For example, 3 ≤ 4 inℝ because 3 = seg≤(ℚ, 3) and 4 = seg≤(ℚ, 4). Because the orderon ℚ is linear (Theorem 5.3.8), it is left to Exercise 5 to prove that we have defined a
linear order on ℝ.

THEOREM 5.6.7

(ℝ,≤) is a linear order but it is not a well-order.
Now to prove that ℝ is complete using the order of Definition 5.6.6.

THEOREM 5.6.8

Every nonempty subset of ℝ with an upper bound has a real least upper bound.
PROOF

Letℱ ≠ ∅ andℱ ⊆ ℝ. Letm ∈ ℝ be an upper bound ofℱ . By Example 4.3.14,
⋃

ℱ is the least upper bound of ℱ . We show that⋃ℱ ∈ ℝ.
∙ Take x ∈ ℱ . Since Dedekind cuts are nonempty, x ≠ ∅, which implies
that⋃ℱ ≠ ∅.

∙ By hypothesis, x ⊆ m for all x ∈ ℱ . Hence,⋃ℱ ⊆ m. Sincem ∈ ℝ, we
have thatm ≠ ℚ, so⋃ℱ ⊂ ℚ.

∙ Let x ∈ ⋃

ℱ and y ≤ x. Thus, x ∈ a for some Dedekind cut a ∈ ℱ .
Since a is downward closed, y ∈ a, so y ∈ ⋃

ℱ . Hence, with the previous
part,⋃ℱ is a proper initial segment of ℚ.
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∙ Let x ∈ a ∈ ℱ . Since a is a Dedekind cut, it has no greatest element.
Thus, there exists y ∈ a such that x < y. Because y ∈ ⋃

ℱ , we see that
⋃

ℱ has no greatest element.
Since every nonempty bounded subset of real numbers has a least upper bound inℝ, the
set of Dedekind cuts does not have the same issue with gaps as ℚ does. For example,
the least upper bound of the set of real numbers

{2, 2.7, 2.71, 2.718, 2.7182, 2.71828,…}

is the Dedekind cut that corresponds to e ∈ R.

Arithmetic

As with the other sets of numbers that have been constructed using the axioms of ZFC,
we now define addition and multiplication on ℝ. First, define the following Dedekind
cuts:

∙ 0 = seg≤(ℚ, 0)

∙ 1 = seg≤(ℚ, 1).
Let x, y ∈ ℝ. That

S = {a + b : a ∈ x ∧ b ∈ y}

is a Dedekind cut is Exercise 3. Assume that 0 ≤ x and 0 ≤ y. We claim that the set
P1 = {ab : 0 ≤ a ∈ x ∧ 0 ≤ b ∈ y} ∪ 0

is a Dedekind cut.
∙ P1 ≠ ∅ because 0 ≠ ∅.
∙ Let u ∈ ℚ ⧵ x and v ∈ ℚ ⧵ y. Let

m =

{

u if u ≥ v,
v if v > u.

Then, m2 ∉ P1, so P1 ≠ ℚ.
∙ Let 0 ≤ a ∈ x and 0 ≤ b ∈ y, and suppose thatw ∈ ℚ such thatw < ab. Hence,
wb−1 < a, which implies that wb−1 ∈ x since x is downward closed. Therefore,
w ∈ P1 because

w = (wb−1)b.

∙ Again, let 0 ≤ a ∈ x and 0 ≤ b ∈ y. Since x and y do not have greatest
elements, there exists u ∈ x and v ∈ y such that a < u and b < v. Then, by
Exercise 5.3.15(b)

ab < uv ∈ P1.
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Furthermore, if x < 0 and y < 0, define
P2 = {ab : a ∈ x ∧ b ∈ y ∧ 0 ≤ −a ∧ 0 ≤ −b} ∪ 0, (5.15)

if x < 0 and 0 ≤ y, define
P3 = {ab : a ∈ x ∧ 0 ≤ b ∈ y}, (5.16)

or 0 ≤ x and y < 0, define
P4 = {ab : 0 ≤ a ∈ x ∧ b ∈ y}, (5.17)

Since P1, P2, P3, P4, and S are Dedekind cuts (Exercise 4), we can use them to
define the two standard operations on ℝ.

DEFINITION 5.6.9

Let x, y ∈ ℝ. Define
x + y = {a + b : a ∈ x ∧ b ∈ y}

and

x ⋅ y =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{ab : 0 ≤ a ∈ x ∧ 0 ≤ b ∈ y} ∪ 0 if 0 ≤ x ∧ 0 ≤ y,
{ab : a ∈ x ∧ b ∈ y ∧ 0 ≤ −a ∧ 0 ≤ −b} ∪ 0 if x < 0 ∧ y < 0,
{ab : a ∈ x ∧ 0 ≤ b ∈ y} if x < 0 ∧ 0 ≤ y,
{ab : 0 ≤ a ∈ x ∧ b ∈ y} if 0 ≤ x ∧ y < 0.

Since addition and multiplication on ℚ are associative and commutative, addition
and multiplication are associative and commutative on ℝ.

THEOREM 5.6.10

Addition and multiplication of real numbers are associative and commutative.
PROOF

Let x, y, z ∈ ℝ. We prove that addition is associative, leaving the rest to Exer-
cise 7.

x + (y + z) = x + {b + c : b ∈ y ∧ c ∈ z}
= {a + v : a ∈ x ∧ v ∈ {b + c : b ∈ y ∧ c ∈ z}}
= {a + (b + c) : a ∈ x ∧ (b ∈ y ∧ c ∈ z)}
= {(a + b) + c : (a ∈ x ∧ b ∈ y) ∧ c ∈ z}
= {u + c : u ∈ {a + b : a ∈ x ∧ b ∈ y} ∧ c ∈ z}
= {a + b : a ∈ x ∧ b ∈ y} + z
= (x + y) + z.
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The Dedekind cuts 0 and 1 behave as expected. For example,
0 + 4 = {a + b : a ∈ 0 ∧ b ∈ 4} = seg≤(ℚ, 4) = 4

and
1 ⋅ 4 = {ab : 0 ≤ a ∈ 1 ∧ 0 ≤ b ∈ 4} ∪ 0 = seg≤(ℚ, 4) = 4.

These equations suggest the following.
THEOREM 5.6.11

ℝ has additive and multiplicative identities.
PROOF

Let x ∈ ℝ. We first show that
x = {a + b : a ∈ x ∧ b ∈ 0} = x + 0.

Take u ∈ x. Since x has no greatest element, there exists v ∈ x such that u < v.
Write u = v + (u − v). Since u − v < 0, we have that u ∈ x + 0. Conversely, let
b ∈ 0. Since b ∈ 0 implies that b < 0, we have that u + b < u (Exercise 5.3.16),
and because x is downward closed, u + b ∈ x.

We next show that
x = x ⋅ 1.

We have two cases to consider.
∙ Let 0 ≤ x. By Definition 5.6.9,

x ⋅ 1 = {a ⋅ b : 0 ≤ a ∈ x ∧ 0 ≤ b ∈ 1} ∪ 0.

Let 0 ≤ a ∈ x and 0 ≤ b < 1. Then, ab ≤ a (Exercise 5.3.17), so ab ∈ x
since x is downward closed. Conversely, take a ∈ x. If a < 0, then a ∈ 0,
and if a = 0, then a = 0 ⋅ 0, so suppose a > 0. Since x has no greatest
element, there exists u ∈ x such that a < u. This implies that au−1 < 1, so
a ∈ x ⋅ 1 because a = u(au−1).

∙ Let x < 0 and proceed like in the previous case.
We leave the proof of the last result to Exercise 10.

THEOREM 5.6.12

∙ Every element of ℝ has an additive inverse.
∙ Every nonzero element of ℝ has a multiplicative inverse.
∙ The distributive law holds for ℝ.

Complex Numbers

The last set of numbers that we define are the complex numbers.
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DEFINITION 5.6.13

Define ℂ = ℝ × ℝ to be the set of complex numbers. Denote (a,b) ∈ ℂ by
a + bi.

Observe that the standard embedding f : ℝ → ℂ defined by f (x) = (x, 0) allows us
to consider ℝ as a subset of ℂ. We will not define an order on ℂ but will define the
standard two operations.

DEFINITION 5.6.14

Let a + bi, c + di ∈ ℂ.
∙ (a + bi) + (c + di) = (a + c) + (b + d)i.
∙ (a + bi) ⋅ (c + di) = (ac − bd) + (ad + bc)i.

We leave the proof of the following to Exercise 11.
THEOREM 5.6.15

∙ i2 = –1 + 0i.
∙ Addition and multiplication are associative and commutative.
∙ ℂ has additive and multiplicative identities.
∙ Every element of ℂ has an additive inverse.
∙ Every nonzero element of ℂ has a multiplicative inverse.
∙ The distributive law holds in ℂ.

Exercises

1. Find the given initial segments in the indicate posets.
(a) seg∣(ℤ, 50) from Example 4.3.6
(b) seg4({0, 1}∗, 101010) from Example 4.3.7
(c) seg⊆(P(ℤ), {1, 2, 3, 4}) from Example 4.3.9

2. Let (A,4) be a poset. Assume that B and C are initial segments of A. Prove that
B ∩ C is an initial segment of A. Is B ∪ C also an initial segment of A?
3. Let x, y ∈ ℝ. Prove that S = {a + b : a ∈ x ∧ b ∈ y} is a Dedekind cut.
4. Prove that P2 (5.15), P3 (5.16), and P4 (5.17) are Dedekind cuts.
5. Prove Theorem 5.6.7.
6. Show that every Dedekind cut has an upper bound in ℝ.
7. Finish the proof of Theorem 5.6.10.
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8. Prove that 0 and 1 are Dedekind cuts.
9. Let a, b ∈ ℝ and ab = 0. Prove that a = 0 or b = 0.
10. Prove Theorem 5.6.12.
11. Prove Theorem 5.6.15.
12. Prove that between any two real numbers is another real number.
13. Prove that between any two real numbers is a rational number.
14. Show that ℚ can be embedded in ℝ by proving that f : ℚ → ℝ defined by

f (a) = seg≤(ℚ, a)

is an order isomorphism preserving ≤ with ≤. Furthermore, show that both ! and ℤ
can be embedded into ℝ.
15. Let f be the function defined in Exercise 14. Show that f (a+1) is an upper bound
of f (a) for all a ∈ ℚ.
16. The absolute value function (Exercise 2.4.23) can be defined so that for all x ∈ ℝ,
|x| = x ∪ −x, where −x refers to the additive inverse of x (Theorem 5.6.12). Let a be
a positive real number. Prove the following for every x, y ∈ ℝ.

(a) | − x| = |x|.
(b) |x2| = |x|2.
(c) x ≤ |x|.
(d) |xy| = |x| |y|.
(e) |x| < a if and only if −a < x < a.
(f) a < |x| if and only if a < x or x < −a.



CHAPTER 6

ORDINALS AND CARDINALS

6.1 ORDINAL NUMBERS

In Chapter 5, we defined certain sets to represent collections of numbers. Despite being
sets themselves, the elements of those sets were called numbers. We continue this asso-
ciation with sets as numbers but for a different purpose. While before we defined !, ℤ,
ℚ, ℝ, and ℂ to represent N, Z,Q, R, and C, the definitions of this chapter are intended
to be a means by which all sets can be classified according to a particular criterion.
Specifically, in the later part of the chapter, we will define sets for the purpose of iden-
tifying the size of a given set, and we begin the chapter by defining sets that are used
to identify whether two well-ordered sets have the same order type (Definition 4.5.24).
A crucial tool in this pursuit is the following generalization of Theorem 5.5.1 to well-
ordered infinite sets.

THEOREM 6.1.1 [Transfinite Induction 1]

Let (A,4) be a well-ordered set. If B ⊆ A and seg4(A, x) ⊆ B implies x ∈ B
for all x ∈ A, then A = B.

A First Course in Mathematical Logic and Set Theory, First Edition. Michael L. O’Leary.
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PROOF
To show that A is a subset of B, suppose that A ⧵ B is nonempty. Since A
is well-ordered by 4, let m be the least element of A ⧵ B. This implies that
seg4(A,m) ⊆ B, so m ∈ B by hypothesis, a contradiction.

Note that transfinite induction restricted to! is simply strong induction (Theorem 5.5.1).
To see this, let the well-ordered set (A,4) of Theorem 6.1.1 be (!,≤). Define the set
B = {k : p(k)} ⊆ ! for some formula p(k). The conditional

seg≤(!, n) ⊆ B → n ∈ B

implies p(0) when n = 0 because seg≤(!, 0) = ∅ and implies
p(0) ∧ p(1) ∧ · · · ∧ p(n − 1) → p(n)

when n > 0 because seg≤(!, n) = n.Our first use of transfinite induction is the following lemma. It uses the terminology
of Exercise 4.4.32 and is the first of a sequence of lemmas that will play a critical role.

LEMMA 6.1.2

Let (A,4) be well-ordered. If ' : A → A is increasing, then a 4 '(a) for all
a ∈ A.

PROOF
Define B = {x ∈ A : x 4 '(x)}, where ' is an increasing function A → A.
Let seg4(A, a) ⊆ B. We note that a is the least element of A ⧵ seg4(A, a). Let
y ∈ seg4(A, a). This implies that y 4 '(y) ≺ '(a) by definition of B and
because y ≺ a. Hence, '(a) ∈ A ⧵ seg4(A, a). Thus, a 4 '(a) and A = B by
transfinite induction (Theorem 6.1.1).
LEMMA 6.1.3

For all well-ordered sets (A,4) and (A′,4′), there exists at most one order iso-
morphism ' : A→ A′.

PROOF
Let ' : A → A′ and  : A → A′ be order isomorphisms. Since both '−1 and
 −1 are order isomorphismsA′ → A (Theorem 4.5.26),  −1 ◦' and '−1 ◦ are
order isomorphisms A → A (Theorem 4.5.27). We note that for every b, c ∈ A,
if b ≺ c, then '(b) ≺′ '(c) and then  −1('(b)) ≺  −1('(c)). This means that
 −1 ◦ ' is increasing. A similar argument proves that '−1 ◦  is increasing. To
show that ' =  , let a ∈ A. By Lemma 6.1.2,

a 4 ( −1 ◦ ')(a)

and
a 4 ('−1 ◦  )(a).

Therefore,  (a) 4′ '(a) and '(a) 4′  (a). Since 4′ is antisymmetric, we have
that '(a) =  (a).



Section 6.1 ORDINAL NUMBERS 285

LEMMA 6.1.4

No well-ordered set (A,4) is order isomorphic to any of its proper initial seg-
ments.

PROOF
Let (A,4) be a well-ordered set. Suppose that S is a proper initial segment
of A. In order to obtain a contradiction, assume that ' : A → S is an order
isomorphism. Take a ∈ A⧵S. Since '(a) ∈ S and ' is increasing, we have that
a 4 '(a) ≺ a by Lemma 6.1.2.

The next result follows from Lemma 6.1.4 (Exercise 1).
LEMMA 6.1.5

Distinct initial segments of a well-ordered set are not order isomorphic.
The lemmas lead to the following theorem.

THEOREM 6.1.6

If (A,4) and (B,4′) are well-ordered sets, there exists an order isomorphism
such that exactly one of the following holds.

∙ A ≅ B.
∙ A is order isomorphic to a proper initial segment of B.
∙ B is order isomorphic to a proper initial segment of A.

PROOF
Let (A,4) and (B,4′) bewell-ordered sets. Appealing to Lemma 6.1.5, if x ∈ A,
there is at most one y ∈ B such that seg4(A, x) ≅ seg4′ (B, y), so define the
function

' = {(x, y) ∈ A × B : seg4(A, x) ≅ seg4′ (B, y)}.

We have a number of facts to prove.
∙ Let y1, y2 ∈ ran(') such that y1 = y2. Take x1, x2 ∈ A such that

seg4(A, x1) ≅ seg4′ (B, y1)

and
seg4(A, x2) ≅ seg4′ (B, y2).

Then, we have seg4(A, x1) ≅ seg4(A, x2), and x1 = x2 by Lemma 6.1.5.
Therefore, ' is one-to-one.

∙ Take x1, x2 ∈ dom(') and assume that x1 4 x2. This implies that
seg4(A, x1) ⊆ seg4(A, x2).
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Then, by definition of ', we have
seg4(A, x1) ≅ seg4′ (B,'(x1))

and
seg4(A, x2) ≅ seg4′ (B,'(x2)).

Hence, seg4′ (B,'(x1)) is order isomorphic to an initial segment S of
seg4′ (B,'(x2)) (Exercise 17). If S ≠ seg4′ (B,'(x1)), then B has two
distinct isomorphic initial segments, contradicting Lemma 6.1.5. This im-
plies that '(x1) 4′ '(x2), so ' is order-preserving.

∙ Let x1, x2 ∈ A. Suppose that x1 4 x2 and x2 ∈ dom('). This means that
there exists y2 ∈ B such that

seg4(A, x2) ≅ seg4′ (B, y2).

If x1 = x2, then x1 ∈ dom('), so assume that x1 ≠ x2. Since x1 ≺ x2, wehave that x1 ∈ seg4(A, x2). Because ' is order-preserving,
seg4(A, x1) ≅ seg4′ (B, y1)

for some y1 ∈ seg4′ (B, y2) (Exercise 17). Therefore, (x1, y1) ∈ ', so
x1 ∈ dom('), proving that the domain of ' is an initial segment of A.

∙ That the range of ' is an initial segment of B is proved like the previous
case.

If ' is a surjection and dom(') = A, then ' is an order isomorphism A → B,
else '−1[B] is a proper initial segment of A. If ' is not a surjection, '[A] is a
proper initial segment of B.

Ordinals

Theorem 6.1.6 is a sort of trichotomy law for well-ordered sets. Two well-ordered sets
look alike, or one has a copy of itself in the other. This suggests that we should be
able to choose certain well-ordered sets to serve as representatives of all the different
types of well-ordered sets. No two of the chosen sets should be order isomorphic, but
it should be the case that every well-ordered set is order isomorphic to exactly one of
them. That is, we should be able to classify all of the well-ordered sets. This will be
our immediate goal and is the purpose behind the next definition.

DEFINITION 6.1.7

The set � is an ordinal number (or simply an ordinal) if (�, ⊆) is a well-ordered
set and � = seg⊆(�, �) for all � ∈ �. For ordinals, define

seg(�, �) = seg⊆(�, �).
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Definition 6.1.7 implies that ! and every natural number is an ordinal because they are
well-ordered by ⊆ and for all n ∈ ! ⧵ {0},

n = {0, 1, 2,… , n − 1} = seg(!, n),

and for all k ∈ n,
k = {0, 1, 2,… , k − 1} = seg(n, k).

For example, 5 ∈ 7 and
5 = {0, 1, 2, 3, 4} = seg(7, 5).

We now prove a sequence of basic results about ordinals. The first is similar to
Theorem 5.2.8, so its proof is left to Exercise 5.

THEOREM 6.1.8

Ordinals are transitive sets.

THEOREM 6.1.9

The elements of ordinals are transitive sets.
PROOF

Let � be an ordinal and � ∈ �. Take  ∈ � and � ∈  . Since � is transitive
(Theorem 6.1.8), we have that  ∈ �. Therefore,  = seg(�, ) and � = seg(�, �),
so

� ∈ seg(�, ) ⊆ seg(�, �) = �,

which implies that � is transitive (Definition 5.2.7).
THEOREM 6.1.10

Every element of an ordinal is an ordinal.
PROOF

Let � be an ordinal and � ∈ �. Notice that this implies that � is transitive (The-
orem 6.1.9). Since � ⊆ �, we have that (�, ⊆) is a well-ordered set by a subset
axiom (5.1.8) and Theorem 4.3.26. Now take � ∈ �. Since � ∈ �, we have that
� is transitive. Therefore, by Exercise 5.2.3,

� = { :  ∈ �}
= { :  ∈ � ∧  ∈ �}
⊆ { :  ∈ � ∧  ⊂ �}
= seg(�, �)
⊆ seg(�, �)
= �.

From this, we conclude that � = seg(�, �).
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THEOREM 6.1.11

Let � and � be ordinals. Then, � ⊂ � if and only if � ∈ �.
PROOF

If � ∈ �, then � ⊂ � because � is transitive (Theorem 6.1.8 and Exercise 5.2.3).
Conversely, suppose that � ⊂ �. Let  ∈ � and � ⊂  with � ∈ �. Since � is an
ordinal, � = seg(�, �). Hence, � = seg(, �), which implies that � ∈  because
 is an ordinal by Theorem 6.1.10. Therefore, � ∈ � because � is transitive
(Theorem 6.1.8). This shows that � is a proper initial segment of � with respect
to ⊆ (Definition 5.6.1). From this, it follows by Lemma 5.6.3 that � = seg(�, �)
for some � ∈ �. Hence, � ∈ �.
THEOREM 6.1.12

Every ordinal is well-ordered by ∈.
The next theorem is an important part of the process of showing that the ordinals

are the sets that classify all well-ordered sets according to their order types. It states
that distinct ordinals are not order isomorphic with respect to ⊆.

THEOREM 6.1.13

For all ordinals � and �, if (�, ⊆) ≅ (�, ⊆), then � = �.
PROOF

Let ' : � → � be an order isomorphism preserving ⊆. Define
A = { ∈ � : '() = }.

Take � ∈ � and assume that seg(�, �) ⊆ A. Then,
'(�) = seg(�, '(�))

= '[seg(�, �)]
= {'() :  ∈ � ∧  ⊂ �}
= { :  ⊂ �}
= �.

The first equality follows because '(�) is an ordinal in �, the second follows
because ' is an order isomorphism, and the fourth equation follows by the as-
sumption. Therefore, by transfinite induction (Theorem 6.1.1), A = �, so ' is
the identity map and � = �.
Because of Theorem 6.1.13, we are able to prove that there is a trichotomy law for

the ordinals with respect to ⊆.
THEOREM 6.1.14 [Trichotomy]

For all ordinals � and �, exactly one of the following holds: � = �, � ⊂ �, or
� ⊂ �.
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PROOF
Since (�, ⊆) and (�, ⊆) are well-ordered, by Theorem 6.1.6, exactly one of the
following holds.

∙ � ≅ �, which implies that � = � by Theorem 6.1.13.

∙ There exists � ∈ � such that � ≅ seg(�, �). Since seg(�, �) is an ordinal
(Theorem 6.1.10), � = seg(�, �), again by Theorem 6.1.13. Therefore,
� ⊂ �.

∙ There exists  ∈ � such that � ≅ seg(�, ). As in the previous case, we
have that � ⊂ �.

Because of Theorem 6.1.11, we can quickly conclude the following.
COROLLARY 6.1.15

For all ordinals � and �, exactly one of the following holds: � = �, � ∈ �, or
� ∈ �.

In addition to the ordinals having a trichotomy law, the least upper bound with respect
to ⊆ of a set of ordinals is also an ordinal (compare Example 4.3.14).

THEOREM 6.1.16

If ℱ is a set of ordinals,⋃ℱ is an ordinal.
PROOF

We show that⋃ℱ satisfies the conditions of Definition 6.1.7. Since the elements
of ordinals are ordinals,⋃ℱ is a set of ordinals, and by Theorem 6.1.14, we see
that (⋃ℱ , ⊆) is a linearly ordered set. Let B ⊆

⋃

ℱ and take � ∈ B. We have
two cases to consider.

∙ Suppose � ∩ B = ∅. Let � ∈ B. Then, � ∉ �, so by Theorem 6.1.11 and
Theorem 6.1.14, � ⊆ �. Hence, � is the least element of B.

∙ Let � ∩B be nonempty. Since � is an ordinal, there exists an ordinal � that
is the least element of � ∩ B with respect to ⊆. Let � ∈ B. If � ⊂ �, then
� ∈ � ∩ B, which implies that � ⊆ �. Also, if � ⊆ �, then � ⊂ �. Since
these are the only two options (Theorem 6.1.14), this implies that � is the
least element of B.

We conclude that (⋃ℱ , ⊆) is a well-ordered set.
Next, let � ∈

⋃

ℱ . This means that there exists an ordinal � ∈ A such
that � ∈ �. Since seg(

⋃

ℱ , �) ⊆ � by definition, take � ∈ �. Since � is
transitive (Theorem 6.1.8), � ∈ �. Therefore, � ∈ ⋃

ℱ , which implies that
� ⊆ seg(

⋃

ℱ , �).
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Classification

Let � be an ordinal number. We check the two conditions of Definition 6.1.7 to show
that �+ is an ordinal.

∙ Let B be a nonempty subset of �∪{�}. If B∩� ≠ ∅, then B has a least element
with respect to ⊆ since (�, ⊆) is well-ordered. If B = {�}, then � is the least
element of B.

∙ Let � ∈ � ∪ {�}. If � ∈ �, then � = seg(�, �) = seg(�+, �) because � is an
ordinal number. Otherwise, � = � = seg(�+, �).

The ordinal �+ is called a successor ordinal because it has a predecessor. For example,
every positive natural number is a successor ordinal.

Now assume that � ≠ ∅ and � is an ordinal that is not a successor.
∙ Let � ∈ � ∈ �. Since � is transitive (Theorem 6.1.8), � ∈ �. Thus, we conclude
that⋃{� : � ∈ �} ⊆ �.

∙ Now take � ∈ �. This implies that � is an ordinal (Theorem 6.1.10), so � ⊂ � by
Theorem 6.1.11. Therefore, �+ ⊆ �, so �+ ⊂ � since � is not a successor. Thus,
�+ ∈ �, again by appealing to Theorem 6.1.11. Because � ∈ �+, we have that
� ⊆

⋃

{� : � ∈ �}.
We conclude that for every nonempty ordinal � that is not a successor,

� =
⋃

�∈�
�.

Such an ordinal number is called a limit ordinal. For example, since every natural num-
ber is an ordinal, ! = ⋃

{n : n ∈ !} is a limit ordinal. Therefore, !+, !++, !+++,…
are also ordinals, but they are successors.

All of this proves the following.
THEOREM 6.1.17

A nonempty ordinal is either a successor or a limit ordinal.
Therefore, by Theorem 6.1.14 and Corollary 6.1.15, we can view the ordinals as sorted
by ⊂ giving

0 ⊂ 1 ⊂ 2 ⊂ · · · ⊂ ! ⊂ !+ ⊂ !++ ⊂ !+++ ⊂ · · ·

and as sorted by ∈ giving
0 ∈ 1 ∈ 2 ∈ · · · ∈ ! ∈ !+ ∈ !++ ∈ !+++ ∈ · · · .

Characterizing every ordinal as being equal to 0, a successor ordinal, or a limit
ordinal allows us to restate Theorem 6.1.1. The form of the theorem generalizes The-
orem 5.4.1 to infinite ordinals. Its proof is left to Exercise 8.
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THEOREM 6.1.18 [Transfinite Induction 2]

If � is an ordinal and A ⊆ �, then A = � if the following hold:
∙ 0 ∈ A.
∙ If � ∈ A, then �+ ∈ A.
∙ If � is a limit ordinal such that � ∈ A for all � ∈ �, then � ∈ A.

We use this second form of transfinite induction to prove the sought-after classification
theorem for well-ordered sets.

THEOREM 6.1.19

Let (A,4) be a well-ordered set. Then, (A,4) ≅ (�, ⊆) for some ordinal �.
PROOF

Define
p(x, y) := y is an ordinal ∧ seg4(A, x) ≅ y.

Let B = {y : ∃x [x ∈ A ∧ p(x, y)]}. By Theorem 6.1.13, p(x, y) defines a func-
tion, so by a replacement axiom (5.1.9), we conclude that B is a set. We have a
number of items to prove.

Let D ⊆ B and D ≠ ∅. Let C = {a ∈ A : ∃�[� ∈ D ∧ p(a, �)]}. Observe
that C is not empty. Therefore, there exists a least element m ∈ C with respect
to 4. Take an ordinal �0 ∈ D such that

seg4(A,m) ≅ �0.

Let � ∈ D. This means that � is an ordinal and
seg4(A, c) ≅ �

for some c ∈ C . Since m 4 c, we have that
seg4(A,m) ⊆ seg4(A, c).

Hence, �0 is isomorphic to a subset of �, which implies that �0 ⊆ � (Theo-
rem 6.1.13). We conclude that (B,⊆) is a well-ordered set.

Let E = {� ∈ B : seg(B, �) = �}. Let seg(B, �) ⊆ E for � ∈ B.
∙ First, suppose that � = + for some ordinal  . Then, seg(B, ) =  , so

seg(B, ) ∪ {} = +.

Also, + ≅ seg4(A, a) for some a ∈ A. Let m be the greatest element of
seg4(A, a) (Exercise 9). This implies that  ≅ seg4(A, a)⧵{m}, so  ∈ B.Hence,

seg(B, ) ∪ {} = seg(B, +),



292 Chapter 6 ORDINALS AND CARDINALS

and we have � ∈ E.
∙ Second, let � = ⋃

{ :  ∈ �}. This means that seg(B, ) =  for all  ∈ �.
Therefore,

seg(B, �) =
⋃

∈�
seg(B, ) =

⋃

∈�
 = �,

and � is again an element of E.
By transfinite induction (Theorem 6.1.18), E = B. This combined with (B,⊆)
being a well-ordered set means that B is an ordinal.

Define ' : A → B by '(x) = y ⇔ p(x, y). Since ' is an order isomorphism
(Exercise 10), B is an ordinal that is order isomorphic to (A,4), and because of
Theorem 6.1.13, it is the only one.
For any well-ordered set (A,⪯), the unique ordinal � such that A ≅ � guaranteed

by Theorem 6.1.19 is called the order type of A. Compare this definition with Defini-
tion 4.5.24. For example, the order type of ({2n : n > 5 ∧ n ∈ ℤ},≤) is !.

Burali-Forti and Hartogs

Suppose A = {0, 4, 6, 9}. Then, ⋃A equals the ordinal 9, which is the least upper
bound of A . Also, assume thatℬ = {5, 100, !}. Then,⋃ℬ = !. However, the least
upper bound of C = {n ∈ ! : ∃k(k ∈ ! ∧ n = 2k)} is not an element of !. Instead,
the least upper bound of C is⋃C = !. Moreover, notice that A ⊆ 10,ℬ ⊆ !+, and
C ⊆ !+. We generalize this to the next theorem.

THEOREM 6.1.20

If ℱ is a set of ordinals, there exists an ordinal � such that ℱ ⊆ �.
PROOF

Take ℱ to be a set of ordinals and let � ∈ ℱ . Then, � ⊆ ⋃

ℱ and ⋃

ℱ is an
ordinal by Theorem 6.1.16. If � ⊂ ⋃

ℱ , then � ∈ ⋃

ℱ by Theorem 6.1.11. If
� =

⋃

ℱ , then � ∈ {⋃ℱ }. Thus, ℱ ⊆
(
⋃

ℱ
)+.

Although every set of ordinals is a subset of an ordinal, there is no set of all ordinals,
otherwise a contradiction would arise, as was first discovered by Cesare Burali-Forti
(1897). This is why when we noted that ⊆ gives the ordinals a linear order, we did not
claim that ⊆ is used to define a linearly ordered set containing all ordinals.

THEOREM 6.1.21 [Burali-Forti]

There is no set that has every ordinal as an element.
PROOF

Suppose ℱ = {� : � is an ordinal} is a set. This implies that ⋃ℱ is an ordinal
by Theorem 6.1.16. However, for every � ∈ ℱ , we have that � ∈ �+ ∈ A,
showing that ℱ ⊆

⋃

ℱ . Since ⋃ℱ ∈ ℱ , we also have ⋃ℱ ∈
⋃

ℱ , which
contradicts Theorem 5.1.16.
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The Burali-Forti theorem places a limit on what can be done with ordinals. One such
example is a theorem of Friedrich Hartogs.

THEOREM 6.1.22 [Hartogs]

For every set A, there exists an ordinal � such that there are no injections of �
into A.

PROOF
Let A be a set. Define

ℰ = {� : � is an ordinal ∧ ∃ ( is an injection � → A)}.

Notice that for every � ∈ ℰ , there exists a bijection '� such that
'� : � → B�

for some B� ⊆ A. Define a well-order 4� on B� by
'�(�1) 4� '�(�2) if and only if �1 ⊆ �2 for all �1, �2 ∈ �.

Then, '� is an order isomorphism preserving ⊆ with 4� . Next, define
ℱ = {(B,≤) : B ⊆ A∧ ≤ is a well-ordering of B}.

Since ℱ ⊆ P(A) × P(A × A), we have that ℱ is a set by the Power Set Axiom
(5.1.7) and a Subset Axiom (5.1.8). Let

p(x, y) := x ∈ ℱ ∧ ∃( is an order isomorphism x→ y
preserving the order on x with ⊆}.

Suppose that p((B,≤), �1) and p((B,≤), �2). By Theorem 6.1.13, we have that
�1 = �2, so p(x, y) defines a function with domain ℱ . Moreover, ℰ is a subset
of the range of this function because p((B� ,4�), �) due to '� . Therefore, ℰ is a
set by a replacement axiom (5.1.9) and a subset axiom, and ℰ cannot contain all
ordinals by the Burali-Forti theorem (6.1.21).

Transfinite Recursion

Theorem 6.1.19 only applies to well-ordered sets, so, for example, it does not apply
to (ℤ,≤) or (ℝ,≤). However, if we change the order on ℤ from the standard ≤ to 4
defined so as to put ℤ into this order,

0, 1,−1, 2,−2, 3,−3,… ,

then (ℤ,4) is a well-ordered set of order type !. That this can be done even with
sets like ℝ is due to a theorem first proved by Zermelo, which is often called the well-
ordering theorem. Its proof requires some preliminary work.

Let A be a set and � an ordinal. By Definition 4.4.13, �A is the set of all functions
� → A. Along these lines, define

<�A = {' : ∃�(� ∈ � ∧ ' is a function � → A)}.
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For example, f, g ∈ <5ℤ, where
f = {(0, 1), (1, 2), (2, 3), (3, 4)}

and
g = {(0,−4), (1, 14)}.

Also, f, g ∈ <!ℤ, but the identity function on ! is not an element of <!ℤ because its
domain is !. We should also note that for any set A,

<∅A = ∅.

We use this notation in the following generalization of recursion to infinite ordinals.
THEOREM 6.1.23 [Transfinite Recursion]

Let � be an ordinal. For every function  : <�A → A, there exists a unique
function ' : � → A such that for every � ∈ �,

'(�) =  (' � �).

PROOF
To prove uniqueness, in addition to ', let '′ be a function � → A such that for
all � ∈ �,

'′(�) =  ('′ � �).

Define B = {� ∈ � : '(�) = '′(�)}. We use transfinite induction (Theo-
rem 6.1.1) to show that B = �. Suppose seg(�, �) ⊆ B with � ∈ �. That is,

∀�[� ∈ � → '(�) = '′(�)].

This implies that ' � � = '′ � �. Therefore,
'(�) =  (' � �) =  ('′ � �) = '′(�),

so � ∈ B, and we conclude that ' = '′.
We prove existence indirectly. Suppose that � is the least ordinal (Exercise 2)

such that
there exists a function  0 : <�A→ A such that

for every ' : � → A, there exists � ∈ �
such that '(�) ≠  0(' � �).

Since the theorem is trivially true for � = 0, we have two cases to consider.
∙ Let � = �+ for some ordinal �. By minimality of �, we have a function
'� : � → A such that for all � ∈ �,

'�(�) =  0('� � �).
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Extend '� to '̄� : � → A by defining '̄�(�) =  0('�), so
'̄�(�) =  0('̄� � �).

This contradicts the minimality of �.
∙ Let � be a limit ordinal. For each � ∈ �, there exists a unique '� : � → A
such that

'�(�) =  ('� � �).

Notice that � ∈  implies that ' is an extension of '� , otherwise ' � �would have the property
(' � �)(�) =  0([' � �] � �)

for all � ∈ � yet '� ≠ ' � �. This contradicts the uniqueness of '� .Therefore, {'� : � ∈ �} is a chain, so, as in Exercise 4.4.13, define the
function ' : � → A by

' =
⋃

�∈�
'� .

To check that ' is the function given by the theorem, take � ∈ �. Since �
is a limit ordinal, �+ ∈ � and

'(�) = '�+ (�) =  0('�+ � �) =  0(' � �),

again contradicting the minimality of �.
Theorem 6.1.23 has a corollary that can be viewed as an extension of Theorem 5.2.14.
Its proof is left to Exercise 18.

COROLLARY 6.1.24

Let A be a set and a ∈ A. For every ordinal �, if  is a function A → A, there
exists a unique function ' : � → A such that

∙ '(0) = a,
∙ '(�+) =  ('(�)) for all � ∈ �,
∙ '() =

⋃

{'(�) : � ∈ } for all limit ordinals  ∈ �.
We are now ready to prove that every set can bewell-ordered. The following theorem

is equivalent to the axiom of choice (Exercise 20).
THEOREM 6.1.25 [Zermelo]

For any set A, there exists a relation R on A such that (A,R) is a well-ordered
set.



296 Chapter 6 ORDINALS AND CARDINALS

PROOF
Take a set A and let � : P(A) → A be a choice function (Corollary 5.1.11). By
Theorem 6.1.22, there is an ordinal � such that no injection � → A exists. Hence,
we have ' : A → � that is one-to-one. Let B ⊆ A. Since every element of � is
an ordinal, there exists an ordinal � ⊆ � such that ' [B] = � (Theorem 6.1.16).
Define

 B = ' �B.

Then,  −1B ∈ <�A. Let
P = { −1B : B ∈ P(A)},

and define
ℎ1 : P → P(A)

by ℎ1( −1B ) = B. Also, define
ℎ2 : P → A

by ℎ2 = � ◦ ℎ1. Since P ⊆ <�A, extend ℎ2 to some
ℎ : <�A→ A

such that ℎ �P = ℎ2. By transfinite recursion (Theorem 6.1.23), there exists a
function f : � → A such that for all � ∈ �,

f (�) = ℎ(f � �).

Define Φ so that for all � ∈ �,

Φ(�) =

{

ℎ(A ⧵ f [�]) if A ⧵ f [�] ≠ ∅,
A if A ⧵ f [�] = ∅.

Notice that A ∉ A by Theorem 5.1.16. Let �0 be the least ordinal such that
Φ(�0) = A. Then, Φ � �0 is a bijection �0 → A [Exercise 19(a)]. Lastly, define
the relation R on A by

aR b if and only if Φ−1(a) ⊆ Φ−1(b),
for all a, b ∈ A. Since ⊆ is a well-order on �0, R is a well-order on A [Exer-
cise 19(b)].

Exercises

1. Prove Lemma 6.1.5.
2. Does seg(⋃A, �) =

⋃

�∈A seg(�, �) for all sets of ordinalsAwith � ∈ A? Explain.
3. Explain why {0, 2, 3, 4, 5} is not an ordinal.
4. Prove that ∅ is an element of every ordinal.
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5. Prove that an ordinal is a transitive set (Theorem 6.1.8).
6. Let A be a set of ordinals. Prove.

(a) ⋂

A is an ordinal.
(b) A has a least element with respect to ⊆.

7. Let B be a nonempty subset of the ordinal �. Prove that there exists � ∈ B such
that � and B are disjoint.
8. Prove Theorem 6.1.18.
9. From the proof of Theorem 6.1.19, prove that seg4(A, a) has a greatest element.
10. Prove that A is order isomorphic to B in the proof of Theorem 6.1.19.
11. The proof of Theorem 6.1.19 contains many isomorphismswithout explicitly iden-
tifying the isomorphism. Find these functions and prove that they are order isomor-
phisms.
12. Let R be a well-ordering on A and suppose that A has no greatest element. Show
the the order type of (A,R) is a limit ordinal.
13. Find a transitive set that is not an ordinal.
14. Theorem 6.1.21 comes from the Burali-Forti paradox. Like Russell’s paradox
(page 225), it arises when any formula is allowed to define a set. In this case, suppose
that A = {� : � is an ordinal} and assume that A is a set. Prove that A is an ordinal
that must include all ordinals as its elements.
15. Prove that there exists a function F such that F (n) is the nth Fibonacci number.
16. Prove that for every function ℎ : <!A → A, there is a unique function f : ! → A
such that for all n ∈ !, f (n) = ℎ(f � n).
17. Let (A,4) and (B,4′) be well-ordered sets and ' : A→ B be an order-preserving
surjection. Prove that for every a ∈ A, there exists b ∈ B such that

'[seg4(A, a)] = seg4′ (B, b).

18. Prove Corollary 6.1.24.
19. Prove the following from the proof of Zermelo’s theorem (6.1.25).

(a) Φ � �0 is a bijection.
(b) R is a well-order on A.

20. Prove that Theorem 6.1.25 implies Axiom 5.1.10.
21. Prove that Zorn’s lemma (5.1.13) implies Theorem 6.1.25 without using the axiom
of choice.
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6.2 EQUINUMEROSITY

How can we determine whether two sets are of the same size? One possibility is to
count their elements. What happens, however, if the sets are infinite? We need another
method. Suppose A = {12, 47, 84} and B = {17, 101, 200}. We can see that these
two sets are the same size without counting. Define a function f : A → B so that
f (12) = 17, f (47) = 101, and f (84) = 200. This function is a bijection. Since each
element is paired with exactly one element of the opposite set, A and B must be the
same size. This is the motivation behind our first definition.

DEFINITION 6.2.1

The setsA andB are equinumerous (written asA ≈ B) if there exists a bijection
' : A→ B. If A and B are not equinumerous, write A ≉ B.

EXAMPLE 6.2.2

Take n ∈ ℤ such that n ≠ 0 and define
nℤ = {nk : k ∈ ℤ}.

We prove that ℤ ≈ nℤ. To show this, we must find a bijection f : ℤ → nℤ.
Define f (k) = nk.

∙ Assume x1, x2 ∈ ℤ, and let f (x1) = f (x2). Then nx1 = nx2, which yields
x1 = x2 since n ≠ 0. Thus, f is one-to-one.

∙ Let y ∈ nℤ. This means that y = nk for some k ∈ ℤ, so y = f (k). This
shows that f is onto and, hence, a bijection.

EXAMPLE 6.2.3

To see ℤ+ ≈ ℤ, define a one-to-one correspondence so that each even integer is
paired with a nonnegative integer and every odd integer is paired with a negative
integer (Figure 6.1). Let g : ℤ+ → ℤ be defined by

g(n) =

{

k − 1 if n = 2k for some k ∈ ℤ+,
−k if n = 2k − 1 for some k ∈ ℤ+.

Notice that g(4) = 1 since 4 = 2(2), and g(5) = −3 because 5 = 2(3) − 1. This
function is a bijection (Exercise 12).
Equinumerosity plays a role similar to that of equality of integers. This is seen in the

next theorem. In fact, the theorem resembles Definition 4.2.4. Despite this, it does not
demonstrate the existence of an equivalence relation. This is because an equivalence
relation is a relation on a set, so, to define an equivalence relation, the next result would
require a set of all sets, contradicting Corollary 5.1.17.
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1 2 3 4 5 6 7

−3 −2 −1 0 1 2 3

8

−4

. . .

. . .. . .

Figure 6.1 ℤ ≈ ℤ+.

THEOREM 6.2.4

Let A, B, and C be sets.
∙ A ≈ A. (Reflexive)
∙ If A ≈ B, then B ≈ A. (Symmetric)
∙ If A ≈ B and B ≈ C , then A ≈ C . (Transitive)

PROOF
∙ A ≈ A since the identity map is a bijection.
∙ Assume A ≈ B. Then, there exists a bijection ' : A → B. Therefore, '−1 is a
bijection. Hence, B ≈ A.

∙ By Theorem 4.5.23, the composition of two bijections is a bijection. Therefore,
A ≈ B and B ≈ C implies A ≈ C .

The symmetric property allows us to conclude that nℤ ≈ ℤ and ℤ ≈ ℤ+ from
Examples 6.2.2 and 6.2.3. The transitivity part of Theorem 6.2.4 allows us to conclude
from this that nℤ ≈ ℤ+.

EXAMPLE 6.2.5

Show (0, 1) ≈ ℝ. We do this in two parts. First, let f : (0, 1) → (−�∕2, �∕2) be
defined by f (x) = �x−�∕2. This function is a one-to-one correspondence since
its graph is a nonvertical, nonhorizontal line (Exercise 4.5.4). Second, define
g : (−�∕2, �∕2) → ℝ to be the function g(x) = tan x. From trigonometry, we
know that tangent is a bijection on (−�∕2, �∕2). Hence,

(0, 1) ≈ (−�∕2, �∕2)

and
(−�∕2, �∕2) ≈ ℝ.

Therefore, (0, 1) ≈ ℝ by Theorem 6.2.4.
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Order

If ≈ resembles equality, the following resembles the ≤ relation.
DEFINITION 6.2.6

The set B dominates the set A (written as A ⪯ B) if there exists an injection
' : A→ B. If B does not dominate A, write A ̸⪯ B. Furthermore, defineA ≺ B
to mean A ⪯ B but A ≉ B.

EXAMPLE 6.2.7

If A ⊆ B, then A ⪯ B. This is proved using the inclusion map (Exercise 4.4.26).
For instance, let � : ℤ+ → ℤ be the inclusion map and f : ℤ → ℝ be defined as

f (n) = seg≤(ℚ, n).

Then, ℤ+ ⪯ ℝ because f ◦ � is an injection. Similarly, ℚ ⪯ ℂ. However, A ⊂ B
does not imply A ≉ B. As an example, nℤ ≈ ℤ, but nℤ ⊂ ℤ when n ≠ ±1.
Another method used to prove that A ⪯ B is to find a surjection B → A. Consider

the sets A = {1, 2} and B = {3, 4, 5}. Define f : B → A to be the surjection given by
f (3) = 1, f (4) = 2, and f (5) = 2. This is the inverse of the relation R in Figure 4.1.
To show thatB dominatesA, we must find an injectionA→ B. To do this, modify f−1
by deleting (2, 4) and call the resulting function g. Observe that g(1) = 3 and g(2) = 5,
which is an injection, so A ⪯ B.

THEOREM 6.2.8

If there exists a surjection ' : A→ B, then B ⪯ A.
PROOF

Let ' : A→ B be onto. Define a relation R ⊆ B × A by
R = {(b, a) : '(a) = b}.

Since ' is onto,
dom(R) = ran(') = B.

Corollary 5.1.11 yields a function f so that dom(f ) = dom(R) and f ⊆ R.
We claim that f is one-to-one. Indeed, let b1, b2 ∈ B. Assume that we have
f (b1) = f (b2). Let a1 = f (b1) and a2 = f (b2) where a1, a2 ∈ A. This means
a1 = a2. Also, '(a1) = b1 and '(a2) = b2 because f ⊆ R. Since ' is a function,
b1 = b2.
EXAMPLE 6.2.9

Let R be an equivalence relation on a set A. The map ' : A → A∕R defined by
'(a) = [a]R is a surjection. Therefore, A∕R ⪯ A.
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EXAMPLE 6.2.10

We know that ℤ+ ⪯ ℝ by Example 6.2.7. We can also prove this by using the
function f : ℝ → ℤ+ defined by f (x) = |⟦x⟧| + 1 and appealing to Theo-
rem 6.2.8.
The next theorem states that ⪯ closely resembles an antisymmetric relation (Defini-

tion 4.3.1). Cantor was the first to publish a statement of it (1888). He proved it using
the axiom of choice, but it was later shown that it can be proved in ZF. It was proved
independently by Ernst Schröder and Felix Bernstein around 1890. The proof given
here follows that of Julius König (1906).

THEOREM 6.2.11 [Cantor–Schröder–Bernstein]

If A ⪯ B and B ⪯ A, then A ≈ B.
PROOF

Let f : A→ B and g : B → A be injections. To prove that A is equinumerous to
B, we define a one-to-one correspondence ℎ : A→ B. To do this, we recursively
define two sequences of sets by first letting

C0 = A ⧵ ran(g)
and

D0 = f [C0].

Then, for n ∈ !,
Cn+1 = g[Dn]

and
Dn = f [Cn].

This is illustrated in Figure 6.2. Note that both {Cn : n ∈ !} and {Dn : n ∈ !}are pairwise disjoint because f and g are one-to-one (Exercise 11). Define ℎ by

ℎ = f �

(

⋃

n∈!
Cn

)

∪ g−1 �

(

ran(g) ⧵⋃
n∈!

Cn

)

.

We show that ℎ is the desired function.
∙ Let x1, x2 ∈ A such that x1 ≠ x2. Since both f and g are one-to-one, we
only need to check the case when x1 ∈ Ck for some k ∈ ! and x2 ∉ Cnfor all n ∈ !. Then, f (x1) ∈ Dk but g−1(x2) ∉ Dk, so f (x1) ≠ g−1(x2).That is, ℎ(x1) ≠ ℎ(x2).

∙ Take y ∈ B. If y ∈ Dk for some k ∈ !, then y = f (x) for some x ∈ Ck.That is, y = ℎ(x). Now suppose y ∉ ⋃

n∈!Dn. Clearly, g(y) ∉ C0.If g(y) ∈ Ck for some k > 0, then y ∈ Dk−1, a contradiction. Hence,
g(y) = x for some x ∈ ran(g) ⧵ ⋃n∈! Cn. This implies that we have
ℎ(x) = g−1(x) = y.
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ran(g)

A  ran(g) 


C0
f C0

C1

C2

D0

D1
.  .  .

.  .  .

f C1

g D0

g D1

ran(g)       


n∈𝜔
Cn

A B

ran(g)       


n∈𝜔
Cng−1

                             B 


n∈𝜔
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↾

↾

↾

↾

↾

Figure 6.2 The Cantor–Schröder–Bernstein theorem.



Section 6.2 EQUINUMEROSITY 303

EXAMPLE 6.2.12

Because (0, 1) ⊆ [0, 1], we have that (0, 1) ⪯ [0, 1], and because the function
f : [0, 1]→ (0, 1) defined by

f (x) = 1
2
x + 1

4

is an injection, we have that [0, 1] ⪯ (0, 1), so we conclude by the Cantor–
Schröder–Bernstein theorem (6.2.11) that (0, 1) ≈ [0, 1].

Diagonalization

The strict inequality A ≺ B is sometimes difficult to prove because we must show that
there does not exist a bijection from A onto B. The next method was developed by
Cantor (1891) to accomplish this for infinite sets. It is called diagonalization.

Let M be the set of all functions f : ! → {m,w}, where m ≠ w. To show that
! ≺ M , we prove two facts:

∙ There exists an injection !→M .
∙ There is no one-to-one correspondence between ! andM .

Cantor’s method does both of these at once. Let ' : ! → M be a function. Writing
the functions of the range of ' as infinite tuples, let

fi = (ai0, ai1, ai2,… , aij ,…),

where aij ∈ {m,w} for all i, j ∈ !. For example,
'(4)(3) = f4(3) = a4,3.

Now, write the functions in order:
f0 = (a00, a01, a02,… , a0j ,…),
f1 = (a10, a11, a12,… , a1j ,…),
f2 = (a20, a21, a22,… , a2j ,…),
⋮

fi = (ai0, ai1, ai2,… , aii,… , aij ,…),
⋮

From this, a function f ∈ M that is not in the list can be found by identifying the
elements on the diagonal and defining f (n) to be the opposite of ann. In other words,
define for all i ∈ !,

bi =

{

m if aii = w,
w if aii = m,
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and f (n) = bn is an element ofM not in the list because for all n ∈ !,
f (n) ≠ ann.

Since the function ' mapping ! to M is arbitrary, there are injections ! → M but
none of them are onto. Therefore,

! ≺ M.

Furthermore, note that the elements of [0, 1] can be uniquely represented as binary
numbers of the form

0 . a0 a1 a2 … ai … ,

where ai ∈ {0, 1} for each i ∈ !. For example
1 = 0.1111111…

and
1∕2 = 0.1000000… .

Therefore,
M ≈ [0, 1] .

Hence, we can conclude like Cantor that since [0, 1] ≈ ℝ (Examples 6.2.5 and 6.2.12),
! ≺ ℝ.

Cantor’s diagonalization argument can be generalized, but we first need a definition.
Let A be a set and B ⊆ A. The function

�B : A→ {0, 1}

is called a characteristic function and is defined by

�B(a) =

{

1 if a ∈ B,
0 if a ∉ B.

For example, if A = ℤ and B = {0, 1, 3, 5}, then �B(1) = 1 but �B(2) = 0. Moreover,
for every set A,

A2 = {�B : B ⊆ A}.

The characteristic function plays an important role in the proof of the next theorem.
THEOREM 6.2.13

If A is a set, A ≺ A2.
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PROOF
Since the function  : A→ A2 defined by

 (a) = �{a}

is an injection, A2 dominates A. To show that A is not equinumerous with A2,
we show that there is no surjection A→ A2. Let ' ∶ A→ A2 be a function, and
for all a ∈ A, write '(a) = �Ba for some Ba ⊆ A. Define � so that

�(a) =

{

1 if �Ba (a) = 0,
0 if �Ba (a) = 1.

Therefore, � ∉ ran(') because �Ba (a) ≠ �(a) for all a ∈ A. However, � ∈ A2.
To prove this, define

B = {a ∈ A : �Ba (a) = 0}.
We conclude that �(a) = �B(a) because if �Ba (a) = 0, then a ∈ B, so �(a) = 1and �B(a) = 1, but if �Ba (a) = 1, then a ∉ B, so �(a) = 0 and �B(a) = 0.
Therefore, � = �B , and ' is not onto.

By Exercise 14,
P(A) ≈ A2.

This result combined with Theorem 6.2.13 quickly yield the following.
COROLLARY 6.2.14

If A is a set, A ≺ P(A).
From the theorem, we conclude that there exists a sequence of sets

! ≺ P(!) ≺ P(P(!)) ≺ P(P(P(!))) ≺ · · · .

Thus, there are larger and larger magnitudes of infinity.
Exercises

1. Given �B : ℤ → {0, 1} with B = {2, 5, 19, 23}, find
(a) �B(1)
(b) �B(2)
(c) �B(−10)
(d) �B(19)

2. Find a surjection ' : ! × !→ ! showing that ! ⪯ ! × !.
3. Prove the given equations.

(a) �A∪B = �A + �B − �A�B
(b) �A∩B = �A�B

4. Prove that there exists a bijection between the given pairs of sets.
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(a) [0, �] and [−1, 1]
(b) [

−�∕2, �∕2
] and [−1, 1]

(c) (0,∞) and ℝ
(d) ! and ℤ
(e) ℤ+ and ℤ−
(f) {(x, 0) : x ∈ ℝ} and ℝ
(g) ℤ and ℤ × ℤ
(h) {(x, y) ∈ ℝ ×ℝ : y = 2x + 4} and ℝ

5. Let a < b and c < d, where a, b, c, d ∈ ℝ. Prove.
(a) (a, b) ≈ (c, d)
(b) [a, b] ≈ [c, d]
(c) (a, b) ≈ [c, d]
(d) (a, b) ≈ (c, d]

6. Prove ℝ ≈ ℂ.
7. Let A, B, C , and D be nonempty sets. Prove.

(a) ℕ ⪯ ℤ−
(b) A ∩ B ⪯ P(A)
(c) A ⪯ A × B
(d) [0, 2] ⪯ [5, 7]
(e) A ∩ B ⪯ A
(f) AB ⪯ A × B
(g) A × {0} ⪯ (A ∪ B) × {1}
(h) A × B × C ⪯ A × B × C ×D
(i) A ⧵ B ⪯ C × A

8. Prove.
(a) If A ⪯ B and B ≈ C , then A ⪯ C .
(b) If A ≈ B and B ⪯ C , then A ⪯ C .
(c) If A ⪯ B and B ⪯ C , then A ⪯ C .
(d) If A ⪯ B and C ⪯ D, then AC ⪯ BD.
(e) If A ≈ B, then P(A) ≈ P(B).
(f) If A ≈ B and C ≈ D, then A × C ≈ B ×D.
(g) If A ≈ B, a ∈ A, and b ∈ B, then A ⧵ {a} ≈ B ⧵ {b}.
(h) If A ⧵ B ≈ B ⧵ A, then A ≈ B.
(i) If A ⊆ B and A ≈ A ∪ C , then B ≈ A ∪ B ∪ C .
(j) If C ⊆ A, B ⊆ D, and A ∪ B ≈ B, then C ∪D ≈ D.

9. Given the function ' : A→ B, prove that ' ≈ A and ' ⪯ ran(').
10. Without appealing to the Cantor–Schröder–Bernstein theorem (6.2.11), prove that
(0, 1) ≈ [0, 1].
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11. Prove that the sets {Cn : n ∈ !} and {Dn : n ∈ !} from the proof of Theo-
rem 6.2.11 are pairwise disjoint.
12. Show that g is a bijection, where g : ℤ+ → ℤ is defined by

g(n) =

{

k − 1 if n = 2k for some k ∈ !,
−k if n = 2k + 1 for some k ∈ !.

13. LetA be an infinite set and {a1, a2,…} be a set of distinct elements fromA. Prove
that A→ A ⧵ {a1} is a bijection, where

'(x) =

{

an+1 if x = an,
x otherwise.

14. For any set A, prove that P(A) ≈ A2.

15. Prove that if f : A → B is a surjection, there exists a function g : B → A such
that f ◦ g = IB .
16. Use the power set to prove that there is no set of all sets.

6.3 CARDINAL NUMBERS

Let A be a set. Define
B = {� : � is an ordinal ∧ � ≈ A}.

By Zermelo’s theorem (6.1.25), A can be well-ordered, so by Theorem 6.1.19, A is
order isomorphic to some ordinal, so B is nonempty. Moreover, B is subset of an
ordinal (Theorem 6.1.20). Therefore, (B,⊆) has a least element, which has the property
that it is not equinumerous to any of its elements. This allows us to define the second
of our new types of number (page 283). This type will be used to denote the size of a
set.

DEFINITION 6.3.1

An ordinal � is a cardinal number (or simply a cardinal) if � ≉ � for every
� ∈ �.

Observe that every infinite cardinal is a limit ordinal. This is because � ≈ �+ for every
infinite ordinal �. However, a limit ordinal might not be a cardinal.

Let � and � be cardinals. Suppose that A ≈ � and A ≈ �. By Theorem 6.2.4,
we have that � ≈ �. If � ∈ � or � ∈ �, this would contradict the definition of a
cardinal number. Therefore, � = � (Corollary 6.1.15), and we conclude that every set
is equinumerous to exactly one cardinal.
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DEFINITION 6.3.2

The cardinality of a set A is denoted by |A| and defined as the unique cardinal
equinumerous to A.

Observe that the cardinality of a cardinal � is �.
EXAMPLE 6.3.3

LetA be a set of cardinals. By Theorem 6.1.16, we know that⋃A is an ordinal.
Now we show that it is also a cardinal. Suppose that � is an ordinal such that
� ≈

⋃

A . By Definition 6.3.1, we must show that ⋃A ⊆ �. Suppose there
exists an ordinal � ∈

⋃

A such that � ∉ �. This means that there exists a
cardinal � ∈ A such that � ∈ �. This is impossible because

� ⪯ � ≺ � ⪯
⋃

A ≈ �.

Finite Sets

Intuitively, we know what a finite set is. Both of the sets A = {0, 2, 3, 5, 8, 10} and
B = {n ∈ ℤ : (n − 1)(n + 3) = 0} are examples because we can count all of their
elements and find that there is only one ordinal equinumerous to A and only one or-
dinal equinumerous to B. That is, |A| = 6 and |B| = 2. This suggests the following
definition.

DEFINITION 6.3.4

For every set A, if there exists n ∈ ! such that A ≈ n, then A is finite. If A is
not finite, it is infinite.
As we will see, finite sets are fundamentally different from infinite sets. There are

properties that finite sets have in addition to the number of their elements that infinite
sets do not have. Let us consider some of those properties of finite sets.

LEMMA 6.3.5

Let n be a positive natural number. If y ∈ n, then n ⧵ {y} ≈ n−.
PROOF

We proceed by mathematical induction.
∙ When n = 1, it must be the case that y = 0, so n ⧵ {y} = 0 = 1−.
∙ Take y ∈ n + 1. If y = n, then (n + 1) ⧵ {n} = n, so suppose that y < n.
By induction, there exists a bijection g : n ⧵ {y} → n−. Then, define
f : (n + 1) ⧵ {y} → n by f (m) = g(m) for all m < n and f (n) = n. The
function f is a bijection (Exercise 3).

Lemma 6.3.5 is used to prove a characteristic property of finite cardinals.
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THEOREM 6.3.6

No natural number is equinumerous to a proper subset of itself.
PROOF

Let n ∈ ! be minimal such that there exists A ⊂ n and n ≈ A. Since ∅ has no
proper subsets and the only proper subset of 1 is 0, we can assume that n ≥ 2.
Let f : A → n be a bijection and x ∈ A and y ∈ n ⧵ A such that f (x) = y. We
check the following.

∙ Let a ∈ A ⧵ {x}. If f (a) = y, then we contradict the hypothesis that f is
one-to-one because f (x) = y and x ≠ a. Thus, f (a) ∈ n ⧵ {y}.

∙ Take b ∈ n ⧵ {y}. Since f is a surjection, there exists a ∈ A such that
f (a) = b. If a = x, then {b, y} ⊆ [x]f (Definition 4.2.7), which is impos-
sible because f is a function. Thus, a ∈ A ⧵ {x}, and we conclude that
f � (A ⧵ {x}) is onto n ⧵ {y}.

∙ Since the restriction of a one-to-one function is one-to-one, f � (A ⧵ {x})
is one-to-one.

Hence, f0 = f � (A ⧵ {x}) is a bijection with range n ⧵ {y}. We have two cases
to consider.

∙ Suppose n− ∉ A. This implies that A ⧵ {x} ⊆ n−. Since x ∈ A, we have
that x ≠ n−, so x ∈ n−. Thus, A⧵{x} ⊂ n−. By Lemma 6.3.5, there exists
a bijection g : n ⧵ {y}→ n−, so we have A ⧵ {x} ≈ n− because g ◦ f0 is abijection, contradicting the minimality of n.

∙ Assume n− ∈ A. Define A′ = A ⧵ {n−} ∪ {y}. Since y ∉ A, A′ ≈ A,
which implies that A′ ≈ n. Replace A with A′ in the previous argument
and use f � (A′ ⧵ {y}) to contradict the minimality of n.

COROLLARY 6.3.7

Every finite set is equinumerous to exactly one natural number.
PROOF

Let A be finite. This means that A ≈ n for some n ∈ !. Let m ∈ ! also have
the property that A ≈ m. This implies that n ≈ m. Hence, by Theorem 6.3.6, we
conclude that n = m because n ⊆ m or m ⊆ n.
There are many results that follow directly from Theorem 6.3.6. The following six

corollaries are among them.
COROLLARY 6.3.8 [Pigeonhole Principle]

Let A and B be finite sets with B ≺ A. There is no one-to-one function A→ B.
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PROOF
There exists unique m, n ∈ ! such that A ≈ m and B ≈ n by Corollary 6.3.7.
Assume that f : A→ B is one-to-one. Then,

m ≈ A ⪯ B ≈ n,

so m is equinumerous to a subset of n. This implies that m ⊆ n. However, n ⊂ m
because B ≺ A, which contradicts Theorem 6.1.14.
COROLLARY 6.3.9

No finite set is equinumerous to a proper subset of itself.

COROLLARY 6.3.10

A set equinumerous to a proper subset of itself is infinite.
Because f : ! → ! ⧵ {0} defined by f (n) = n + 1 is a bijection, we have the next
result by Corollary 6.3.10.

COROLLARY 6.3.11

! is infinite.
The proofs of the last two corollaries are left to Exercise 5.

COROLLARY 6.3.12

If A is a proper subset of a natural number n, there exists m < n such that A ≈ m.

COROLLARY 6.3.13

Let A ⊆ B. If B is finite, A is finite, and if A is infinite, B is infinite.

Countable Sets

Since ! is the first infinite ordinal, it is also a cardinal. Therefore,
|A| = ! if and only if A ≈ !.

As sets go, finite sets and those equinumerous with ! are small, so we classify them
together using the next definition.

DEFINITION 6.3.14

A set A is countable if A ⪯ !.
Sometimes countable sets are called discrete or denumerable. For example, the bi-
jection f : ℤ+ → ! defined by f (n) = n− shows that ℤ+ is countable. Moreover, a
nonempty finite set is countable and can be written as

{a0, a1,… , an−1},
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for some positive integer n. A countably infinite set can be written as

{a0, a1, a2,…},

where there are infinitely many distinct elements of the set.
EXAMPLE 6.3.15

The set of rational numbers is a countable set. To prove this, define a bijection
f : !→ ℚ by first mapping the even natural numbers to the nonnegative rational
numbers. The function is defined along the path indicated in Figure 6.3. When
a rational number that previously has been used is encountered, it is skipped.
To complete the definition, associate the odd naturals with the negative ratio-
nal numbers using a path as in the diagram. This function is a bijection, so we
conclude that ℚ is countable.
We have defined countability in terms of bijections. Now let us identify a condition

for countability using surjections.
THEOREM 6.3.16

A set A is countable if and only if there exists a function from ! onto A.
PROOF

If ' : ! → A is a surjection, by Theorem 6.2.8, A ⪯ !. Conversely, suppose A
is countable. We have two cases to check.

∙ SupposeA ≈ !. Then, there is a surjection from the set of natural numbers
to A.

f(6)  =
2
1

2
2

f(8)  =
2
3

f(4)  =
1
1

f(2)  =
1
2

f(10)  =
1
3

f(0)  =
0
1

0
2

0
3

. . .

Figure 6.3 The rational numbers are countable.
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∙ Now let A ≈ n for some n ∈ !. If A = ∅, then ∅ is a surjection ! → A.
Thus, assume A ≠ ∅. This means that we can write

A = {a0, a1,… , an−1}.

Define ' : !→ A by

'(i) =

{

ai if i = 0, 1,… , n − 1,
an−1 otherwise.

This function is certainly onto.
If Ai is countable for all i = 0, 1,… , n − 1, then A0 ×A1 × · · · ×An−1 is countable(Exercise 15). In particular, ! × ! and ℤ × ℤ are countable. We also have the next

theorem.
THEOREM 6.3.17

The union of a countable family of countable sets is countable.
PROOF

Let {A� : � ∈ I} be a family of countable sets with I countable. Since we have
that⋃∅ = ∅ is countable (Example 3.4.12), we can assume that I is nonempty.
For each � ∈ I , there exists a surjection in !(A�) by Theorem 6.3.16. Therefore,
by Corollary 5.1.11, there exists

f : I → !(A�)

such that f (�) is a surjection ! → A� for all � ∈ I . Because I is countable,
we have a surjection g : ! → I , and since ! × ! is countable, we have another
surjection ℎ : !→ ! × !. We now define

 : ! × !→
⋃

�∈I
A�

by  (m, n) = f (g(m))(n) and let
' : !→

⋃

�∈I
A�

be defined by ' =  ◦ℎ. To check that ' is onto, let a ∈ A� , some � ∈ I . Since
g is onto, there exists i ∈ ! so that g(i) = �. Furthermore, since f (�) is onto,
we have j ∈ ! such that f (�)(j) = a, and since ℎ is onto, there exists k ∈ ! so
that ℎ(k) = (i, j). Therefore,

'(k) = ( ◦ ℎ)(k) =  (i, j) = f (g(i))(j) = f (�)(j) = a.

For example,⋃{nℤ : n ∈ !} and⋃{ℚ × {n} : n ∈ !} are countable.
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Alephs

Cantor denoted the first infinite cardinal ! by ℵ0. The symbol ℵ (aleph) is the first
letter of the Hebrew alphabet. The next magnitude of infinity is ℵ1, which seems to
exist by Theorem 6.2.13. This continues and gives an increasing sequence of infinite
cardinals, and since natural numbers must be less than any infinite cardinal, we have

0 ≺ 1 ≺ 2 ≺ · · · ≺ ℵ0 ≺ ℵ1 ≺ ℵ2 ≺ · · · .

For instance, 4 ≺ ℵ1, ℵ0 ⪯ ℵ0, and ℵ3 ≺ ℵ7.
EXAMPLE 6.3.18

Although he was unable to prove it, Cantor suspected that ℵ1 = |ℝ|. This con-
jecture is called the continuum hypothesis (CH). However, it is possible that
ℵ1 ≺ |ℝ|. It is also possible that ℵ1 = |ℝ|. Cantor was unable to prove CH
because it is undecidable assuming the axioms of ZFC. In other words, it is an
ST-sentence that can be neither proved nor disproved from ZFC.
Now to define the other alephs. Pick an ordinal �. Define the function ℎ by

ℎ(g) = least infinite cardinal not in ran(g),
where g is a function with dom(g) ∈ �. For example, if � = 5 and

g = {(0, �0), (1, �1), (2, �2), (3, �3), (4, �4)},

then ℎ(g) is the least infinite cardinal not in {�0, �1, �2, �3, �4}. By Transfinite Recur-
sion (6.1.23), there exists a unique function f with domain � and

f (�) = least infinite cardinal not in ran(f � �)
for all � ∈ �. Define

ℵ� = f (�).

Since ℎ(0) = !, we have that ℵ0 = !. Moreover, the definition of f implies that
ℵ1 = least infinite cardinal not in {ℵ0},
ℵ2 = least infinite cardinal not in {ℵ0, ℵ1},
ℵ3 = least infinite cardinal not in {ℵ0, ℵ1, ℵ2},

⋮

ℵ! = least infinite cardinal not in {ℵn : n ∈ !},
⋮

ℵ� = least infinite cardinal not in {ℵ� : � ∈ �}
⋮

The question at this point is whether the alephs name all of the infinite cardinals.
The next theorem answers the question.
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THEOREM 6.3.19

For every infinite cardinal �, there exists an ordinal � such that � = ℵ� .
PROOF

Suppose � ≠ ℵ� for every ordinal �. We can assume that � is the minimal
such cardinal. Thus, for all cardinals � ∈ �, there exists an ordinal �� such that
� = ℵ�� . Therefore, the least infinite cardinal not an element of

{ℵ�� : � ∈ � ∧ � is a cardinal}
is the next aleph, but this is �.
EXAMPLE 6.3.20

The generalized continuum hypothesis (GCH) states that for every ordinal �,
ℵ�+ = |P(ℵ�)|.

When � = 0, GCH implies that
ℵ1 = |P(ℵ0)| = |ℝ|,

which is CH (Example 6.3.18). Like CH, GCH is undecidable in ZFC.
Like the ordinals, the cardinals can be divided into two classes.

DEFINITION 6.3.21

Let � be a nonzero cardinal number. If � ∈ ! or there exists an ordinal � such
that � = ℵ�+ , then � is a successor cardinal. Otherwise, � is a limit cardinal.

For example, the positive natural numbers and ℵ1 are successor cardinals, while ℵ0and ℵ! are limit cardinals. Notice that if � is a limit cardinal,
� =

⋃

{� : � ∈ � ∧ � is a cardinal}.

Exercises

1. Prove that |�| = |�+| for every ordinal �.
2. Let p(x) be a formula. Prove that if p(�) is false for some ordinal �, then there exists
a least ordinal � such that p(�) is false.
3. Prove that the function f in the proof of Lemma 6.3.5 is a bijection.
4. Show that the following attempted generalization of Lemma 6.3.5 is false: Let � be
an ordinal and a ∈ A. If |A| = ℵ�+ , then |A ⧵ {a}| = ℵ� .
5. Demonstrate Corollaries 6.3.12 and 6.3.13.
6. Let A and B be finite sets. Prove the following.
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(a) |A ∪ B| = |A| + |B| − |A ∩ B|
(b) |A ∩ B| = |A| − |A ⧵ B|
(c) |A × B| = |A| ⋅ |B|

7. Prove that the intersection and union of finite sets is finite is finite.
8. Prove that every finite set has a choice function without using the axiom of choice.
9. Let R and R−1 be well-orderings of a set A. Prove that A is finite.
10. Show that ℤ is countable.
11. Let A be infinite. Find infinite sets B and C such that A = B ∪ C .
12. If B is countable, prove that |A × B| = |A|.
13. Let A and B be sets and A is countable. Prove that B is countable when A ≈ B.
14. Let A and B be countable sets. Show that the given sets are countable.

(a) A ∪ B
(b) A ∩ B
(c) A × B
(d) A ⧵ B

15. Let A0, A1,… , An−1 be countable sets. Prove that the given sets are countable.
(a) A0 ∪ A1 ∪ · · · ∪ An−1
(b) A0 ∩ A1 ∩ · · · ∩ An−1
(c) A0 × A1 × · · · × An−1

16. Prove.
(a) If A ∪ B is countable, A and B are countable.
(b) If A is countable, 2! ≈ A!

17. Let ℱ be a set of cardinals. Prove that⋃ℱ is a cardinal.
18. A real number is algebraic if it is a root of a nonzero polynomial with integer
coefficients. A real number that is not algebraic is transcendental. Prove that the set
of algebraic numbers is countable and the set of transcendental numbers is uncountable.
19. Take a set A and define B = {� : � is an ordinal∧� ⪯ A}. [See Hartogs’ theorem
(6.1.22).] Prove the following.

(a) B is a cardinal.
(b) |A| ≺ B.
(c) B is the least cardinal such that |A| ≺ B.

20. Assuming GCH, find |P(P(P(P(P(ℝ)))))|.
21. Prove that for all ordinals � and �, if � ∈ �, then ℵ� ∈ ℵ� .



316 Chapter 6 ORDINALS AND CARDINALS

22. Recursively define the following function using i (beth), the second letter of the
Hebrew alphabet. Let � be an ordinal.

i0 = ℵ0,

i�+ = 2i� ,

i� =
⋃

�∈�
i� if � is a limit.

(a) Use i to restate GCH.
(b) Use transfinite recursion (Corollary 6.1.24) to prove thati defines a function.

6.4 ARITHMETIC

Since every natural number is both an ordinal and a cardinal, we want to extend the
operations on ! to all of the ordinals and all of the cardinals. Since the purpose of the
ordinals is to characterize well-ordered sets but the purpose of the cardinals is to count,
we expect the two extensions to be different.

Ordinals

Definitions 5.2.15 and 5.2.18 define what it means to add and multiply finite ordinals.
When generalizing these two definitions to the infinite ordinals, we must take care
because addition andmultiplication should be binary operations, but if we defined these
operations on all ordinals, their domains would not be sets by the Burali-Forti Theroem
(6.1.21), resulting in the operations not being sets. Therefore, we choose an ordinal and
define addition and multiplication on it. Since 1 + 1 ∉ 2, the ordinal must be a limit
ordinal.

DEFINITION 6.4.1

Let � be a limit ordinal. For all �, � ∈ � ,
∙ � + 0 = �,
∙ � + �+ = (� + �)+,
∙ � + � =

⋃

{� + � : � ∈ �} if � is a limit ordinal.
As with addition of natural numbers (Definition 5.2.15), to prove that Definition 6.4.1
gives a binary operation, let  : � → � be the successor function. By transfinite
recursion (Corollary 6.1.24), there exist unique functions '� : � → � for all � ∈ �
such that

∙ '�(0) = �

∙ '�(�+) =  ('�(�)) = '�(�)+
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∙ for all limit ordinals � ∈ � ,
'�(�) =

⋃

�∈�
'�(�).

Define A : � × � → � by A(�, �) = '�(�). By the uniqueness of each '� , the binaryoperation A is the function of Definition 6.4.1, so
� + � = A(�, �).

Furthermore, take � ′ to be a limit ordinal such that � ⊆ � ′ and define  ′ : � ′ → � ′ to
be the successor function. As above, there are unique functions '′� for all � ∈ � ′ withthe same properties as '� . Notice that

'� = '′� � �.

Otherwise, '′� � � would have the same properties as '� yet be a different function,
contradicting the uniqueness given by transfinite recursion. Next, define the binary
operation A′ : � ′ × � ′ → � ′ by A′(�, �) = '′�(�). Therefore,

A = A′ � (� × � ).

This implies that although addition is not defined as a binary operation on all ordinals,
we can add any two ordinals and obtain the same sum independent of the ordinal on
which the addition is defined.

Consider m ∈ !. Since ! is a limit ordinal,
m + ! =

⋃

{m + n : n ∈ !} = !.
However,

! + 1 = ! + 0+ = (! + 0)+ = !+ = ! ∪ {!},

and
! + 2 = ! + 1+ = (! + 1)+ = (! ∪ {!})+ = ! ∪ {!} ∪ {! ∪ {!}} = !++.

Therefore, addition of infinite ordinals is not commutative. Moreover, an order isomor-
phism can be defined between !+n and ({0}×!)∪({1}×n) ordered lexicographically
(Exercise 4.3.16) as

0 1 2 … n … ! !+ !++ …
↕ ↕ ↕ ↕ ↕ ↕ ↕

(0, 0) (0, 1) (0, 2) … (0, n) … (1, 0) (1, 1) (1, 2) …

This means that ! + n looks like ! followed by a copy of n. Generalizing, the ordinal
! + ! looks like ! followed by a copy of !. In particular,

! + ! =
⋃

n∈!
! + n,

which means that the proof its existence requires a replacement axiom (5.1.9). All of
this suggests the next result.
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LEMMA 6.4.2

Let � be a limit ordinal and �, � ∈ � . If x ∈ � + �, then x ∈ � or x ∈ � + b for
some b ∈ �.

PROOF
Define

A = {z ∈ � : ∀x(x ∈ � + z→ x ∈ � ∨ ∃g ∈ z[x ∈ � + g])}.

Clearly, 0 ∈ A, so take  ∈ � such that seg(�, ) ⊆ A.
∙ Let  = �+ for some ordinal �. Take x ∈ � + �+, which implies that
x ∈ (� + �)+. This means that x ∈ � + � or x = � + �. If x ∈ � + �, then
we are done. If x = � + �, then x ∈ (� + �)+ = � + �+.

∙ Let  be a limit ordinal. Take x ∈ � + . This means that x ∈ � + � for
some � ∈  . Therefore, x ∈ � or x ∈ � + d for some d ∈ � ⊂  .

Using Lemma 6.4.2, we can prove the next useful result.
LEMMA 6.4.3

Let � be a limit ordinal. If �, � ∈ � , then � + � = � ∪ {� + b : b ∈ �}.
PROOF

Define
A = {z ∈ � : � + z = � ∪ {� + g : g ∈ z}}.

We have that 0 ∈ A, so assume seg(�, ) ⊆ A, where  ∈ � .
∙ Suppose  = �+. Then,

� ∪ {� + d : d ∈ �+} = � ∪ {� + d : d ∈ �} ∪ {� + �}
= (� + �) ∪ {� + �}
= (� + �)+

= � + �+.

∙ Let  be a limit ordinal. Take x ∈ � +  . By Lemma 6.4.2, we have x ∈ �
or x ∈ � + g for some g ∈  . If the former, we are done, so suppose the
latter. In this case, the assumption gives

� + g = � ∪ {� + g′ : g′ ∈ g}.
Thus, x = �+g′ for some g′ ∈ g ∈  . Conversely, if x ∈ �, then x ∈ �+0,
so x ∈ �+  . For the other case, let x ∈ {�+ g : g ∈ }. This implies that
x ∈ (� + g)+ = � + g+ for some g ∈  . Since g+ ∈  ,

x ∈
⋃

{� + g′ : g′ ∈ } = � + .
Although ordinal addition is not commutative, it does have other familiar properties

as noted in the next result.
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THEOREM 6.4.4

Addition of ordinals is associative, and 0 is the additive identity.
PROOF

Let � be a limit ordinal. Define
A = {� ∈ � : 0 + � = �}.

Suppose  is an ordinal such that seg(�, ) ⊆ A. We have two cases to check.
∙ Let  = �+ for some ordinal �. Then,

0 +  = 0 + �+ = (0 + �)+ = �+ = .

∙ Let  be a limit ordinal. We then have
0 +  =

⋃

�∈
(0 + �) =

⋃

�∈
� = .

In both cases,  ∈ A, so by transfinite induction, A = � . Since we can also prove
that

� = {� ∈ � : � + 0 = �},
we conclude that 0 is the additive identity.

To prove that ordinal addition is associative, we proceed by transfinite induc-
tion. Let �, �, � ∈ � . Define

B = {z ∈ � : � + (� + z) = (� + �) + z}.
Assume that seg(�, ) ⊆ B. Then,  ∈ B because by Lemma 6.4.3, we have

� + (� + ) = � ∪
⋃

{� + x : x ∈ � + }
= � ∪

⋃

{� + x : x ∈ � ∨ ∃g(g ∈  → x = � + g)}

= � ∪
⋃

({� + x : x ∈ �} ∪ {� + (� + g) : g ∈ })
= � ∪

⋃

{� + x : x ∈ �} ∪⋃

{(� + �) + g : g ∈ }
= (� ∪ �) ∪

⋃

{� + � + g : g ∈ }
= (� + �) + .

Note that Exercise 3.4.28(e) is used on the fourth equality.

DEFINITION 6.4.5

Let � be a limit ordinal. For all �, � ∈ � ,
∙ � ⋅ 0 = 0,
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∙ � ⋅ �+ = � ⋅ � + �,
∙ � ⋅ � =

⋃

{� ⋅ � : � ∈ �} if � is a limit ordinal.
As with ordinal addition, ordinal multiplication is well-defined by transfinite recursion
(Exercise 3). Also, as with addition of ordinals, certain expected properties hold, while
others do not. The next two results are the analog of Lemma 6.4.3 and Theorem 6.4.4.
Their proofs are Exercise 4.

LEMMA 6.4.6

If � and � are ordinals, � ⋅ � = {� ⋅ b + a : b ∈ � ∧ a ∈ �}.

THEOREM 6.4.7

Multiplication of ordinals is associative, and 1 is the multiplicative identity.
Observe that

0 ⋅ ! =
⋃

{0 ⋅ n : n ∈ !} = 0.
Also, ! ⋅ 1 = 1 ⋅ ! = ! (Theorem 6.4.7), so multiplication on the right by a natural
number behaves as we would expect in that

! ⋅ 2 = ! ⋅ 1 + ! = ! + ! (6.1)
and

! ⋅ 3 = ! ⋅ 2 + ! = ! + ! + !,

but
2 ⋅ ! =

⋃

{2 ⋅ n : n ∈ !} = !
and

3 ⋅ ! =
⋃

{3 ⋅ n : n ∈ !} = !.
Hence, multiplication of ordinals is not commutative. Because of this, it is not surpris-
ing that there are issues with the distributive law. For ordinals, there is a left distributive
law but not a right distributive law (Exercise 9).

THEOREM 6.4.8 [Left Distributive Law]

� ⋅ (� + �) = � ⋅ � + � ⋅ � for all ordinals �, �, and �.
Since addition of ordinals is an operation on a limit ordinal � , we know that for all

ordinals �, �, � ∈ � ,
� = � ⇒ � + � = � + �

and
� = � ⇒ � ⋅ � = � ⋅ �.

The next result gives information regarding how ordinal multiplication behaves with
an inequality.
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THEOREM 6.4.9

Let �, �, and � be ordinals.
∙ If � ⊂ �, then � + � ⊂ � + �.

∙ If � ⊆ �, then � + � ⊆ � + �.

∙ If � ⊂ � and � ≠ 0, then � ⋅ � ⊂ � ⋅ �.

∙ If � ⊆ �, then � ⋅ � ⊆ � ⋅ �.

PROOF
We prove the third part, leaving the others to Exercise 7. Let � ⊂ � and � ≠ 0.
Then, by Lemma 6.4.6,
� ⋅ � = {� ⋅ a + d : a ∈ � ∧ d ∈ �} ⊂ {� ⋅ b + d : b ∈ � ∧ d ∈ �} = � ⋅ �.

Finally, we define exponentiation so that it generalizes exponentiation on ! (Exer-
cise 5.2.17). It is a binary operation (Exercise 3).

DEFINITION 6.4.10

Let � be a limit ordinal and �, � ∈ � .
∙ �0 = 1

∙ ��+ = �� ⋅ �

∙ �� =
⋃

{�� : � ∈ �} if � is a limit ordinal.

For example,
!1 = !0

+
= !0 ⋅ ! = 1 ⋅ ! = !,

and
!2 = !1

+
= !1 ⋅ ! = ! ⋅ !,

so raising an ordinal to a natural number appears to behave as expected. Also,
1! =

⋃

{1n : n ∈ !} =⋃

{1} = 1

and
2! =

⋃

{2n : n ∈ !} = !.
We leave the proof of the following properties of ordinal exponentiation to Exercise 11.



322 Chapter 6 ORDINALS AND CARDINALS

THEOREM 6.4.11

Let �, �, � be ordinals.
∙ ��+� = �� ⋅ �� .
∙ (��)� = ��⋅� .

Cardinals

Even though the finite cardinals are the same sets as the finite ordinals and every infinite
cardinal is a limit ordinal, the arithmetic defined on the cardinals will only apply when
the given sets are viewed as cardinals. The definitions for addition, multiplication, and
exponentiation for cardinals are not given recursively.

DEFINITION 6.4.12

Let � and � be cardinals.
∙ � + � = |(� × {0}) ∪ (� × {1})|

∙ � ⋅ � = |� × �|

∙ �� = |

��|.

Since ordinal arithmetic was simply a generalization of the arithmetic of natural num-
bers, that the addition worked in the finite case was not checked. Here this is not the
case, so let us check

2 + 3 = |(2 × {0}) ∪ (3 × {1})| = |{(0, 0), (1, 0), (0, 1), (1, 1), (2, 1)}| = 5.

Also,
3 + 2 = |(3 × {0}) ∪ (2 × {1})| = |{(0, 0), (1, 0), (2, 0), (0, 1), (1, 1)}| = 5.

This suggests that cardinal addition is commutative. This and other basic results are
given in the next theorem. Some details of the proof are left to Exercise 14.

THEOREM 6.4.13

Addition of cardinals is associative and commutative, and 0 is the additive iden-
tity.

PROOF
Let �, �, and � be cardinals. Addition is associative because

(� × {0}) ∪ [([� × {0}] ∪ [� × {1}]) × {1}]

is equinumerous to
[([� × {0}] ∪ [� × {1}]) × {0}] ∪ (� × {1}),
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it is commutative because
(� × {0}) ∪ (� × {1}) ≈ (� × {1}) ∪ (� × {0}),

and 0 is the additive identity because
(� × {0}) ∪ (0 × {1}) = (� × {0}).

Now let us multiply
2 ⋅ 3 = |{0, 1} × {0, 1, 2}| = |{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}| = 6

and
3 ⋅ 2 = |{0, 1, 2} × {0, 1}| = |{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}| = 6.

As with cardinal addition, it seems that cardinal multiplication is commutative. This
and other results are stated in the next theorem. Its proof is left to Exercise 15.

THEOREM 6.4.14

Multiplication of cardinals is associative and commutative, and 1 is the multi-
plicative identity.

As with ordinal arithmetic (Theorem 6.4.8), cardinal arithmetic has a left distribution
law, but since cardinal multiplication is commutative, cardinal arithmetic also has a
right distribution law.

THEOREM 6.4.15 [Distributive Law]

Let �, �, and � be cardinals.
∙ � ⋅ (� + �) = � ⋅ � + � ⋅ �.

∙ (� + �) ⋅ � = � ⋅ � + � ⋅ �.

PROOF
The left distribution law holds because

� × ([� × {0}] ∪ [� × {1}]) ≈ ([� × �] × {0}) ∪ ([� × �] × {1}).

The remaining details of the proof are left to Exercise 16.
The last of the operations of Definition 6.4.12 is exponentiation. Let � be a cardinal.

Observe that since there is exactly one function 0→ � (Exercise 4.4.16),
�0 = |

0�| = 1

and if � ≠ 0,
0� = |

�0| = 0
because there are no functions � → 0, and by Theorem 6.2.13,

� ≺ 2� .

In addition, cardinal exponentiation follows other expected rules.
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THEOREM 6.4.16

Let �, �, and � be cardinals.
∙ ��+� = �� ⋅ ��.
∙ (� ⋅ �)� = �� ⋅ ��.
∙ (��)� = ��⋅�.

PROOF
We prove the last part and leave the rest to Exercise 17. Define

' : �(��) → �×��

such that for all  ∈ �(��
), � ∈ � and � ∈ �,
'( )(�, �) =  (�)(�).

We claim that ' is a bijection.
∙ Let  1,  2 ∈ �(��

). Assume that '( 1) = '( 2). Take � ∈ � and � ∈ �.
Then,

 1(�)(�) = '( 1)(�, �) = '( 2)(�, �) =  2(�)(�).

Therefore,  1 =  2, and ' is one-to-one.
∙ Let  ∈ �×��. For � ∈ � and � ∈ �, define  ′(�)(�) =  (�, �). This
implies that '( ′) =  , so ' is onto.

Since every infinite cardinal number can be represented by an ℵ, let us determine
how to calculate using this notation. We begin with a lemma.

LEMMA 6.4.17

If n ∈ ! and � an infinite cardinal, n + � = n ⋅ � = �.
PROOF

Let n be a natural number. Define ' : (n × {0}) ∪ (� × {1}) → � by
'(i, 0) = i for all i < n,
'(�, 1) = n + � for all � ∈ �.

For example, if n = 5, then '(4, 0) = 4, '(0, 1) = 5, '(6, 1) = 11, '(!, 1) = !,
and '(! + 1, 1) = ! + 1. Therefore, n + � = � because ' is a bijection. That
n ⋅ � = � is left to Exercise 18.

Lemma 6.4.17 allows us to compute with alephs.



Section 6.4 ARITHMETIC 325

THEOREM 6.4.18

Let � and � be ordinals and n ∈ !.
∙ n + ℵ� = n ⋅ ℵ� = ℵ� .

∙ ℵ� + ℵ� = ℵ� ⋅ ℵ� =

{

ℵ� if � ≥ �,
ℵ� otherwise.

PROOF
The first part follows by Lemma 6.4.17. To prove the addition equation from
the second part, let � and � be ordinals. Without loss of generality assume that
� ⊆ �. By Definition 6.4.12,

ℵ� + ℵ� = |(ℵ� × {0}) ∪ (ℵ� × {1})|.

Since ℵ� = |ℵ� × {1}|,
ℵ� ⪯ |(ℵ� × {0}) ∪ (ℵ� × {1})|.

Furthermore, because ℵ� ⊆ ℵ� ,
|(ℵ� × {0}) ∪ (ℵ� × {1})| ⪯ |(ℵ� × {0}) ∪ (ℵ� × {1})|

= |ℵ� × {0, 1}|
= ℵ� .

Because of Lemma 6.4.17, the last equality holds since ℵ� is infinite and {0, 1}is finite. Hence,
ℵ� + ℵ� ≈ ℵ�

by the Cantor–Schröder–Bernstein theorem (6.2.11). Since both ℵ� +ℵ� and ℵ�are cardinals, ℵ� + ℵ� = ℵ� .
For example, ℵ5 +ℵ9 = ℵ5 ⋅ℵ9 = ℵ9. More generally, we quickly have the following
corollary by Theorem 6.3.19.

COROLLARY 6.4.19

For every infinite cardinal �, both � + � = � and � ⋅ � = �.

Exercises

1. Let A = {A0, A1,… , An−1} be a pairwise disjoint family of sets. Assuming that
the sets are distinct, prove that the cardinality of⋃A is equal to the sum

|A0| + |A1| + · · · + |An−1|.

2. Let � and � be ordinals. Let ' : � → � be a function such that '(�) ∈ '() for all
� ∈  ∈ � (Compare Lemma 6.1.2). Prove the following.
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(a) � ⊆ �.
(b) � ⊆ '(�) for all � ∈ �.

3. Let � be a limit ordinal. Use transfinite recursion to prove that ordinal multiplication
(Definition 6.4.5) and ordinal exponentiation (Definition 6.4.10) are binary operations
on � .
4. Prove Lemma 6.4.6 and Theorem 6.4.7.
5. For every ordinal �, prove that 0 ⋅ � = 0.
6. Prove that for all n ∈ !, n + ! = n ⋅ ! as ordinals. Can this be generalized to
� + � = � ⋅ � for ordinals � ∈ � with � being infinite? If so, is the � ∈ � required?
7. Prove the remaining parts of Theorem 6.4.9.
8. Find ordinals �, �, and � such that the following properties hold.

(a) � ⊂ � but � + � ⊆ � + �.
(b) � ⊂ � but � ⋅ � ⊆ � ⋅ �.

9. Let �, �, and � be ordinals.
(a) Prove that � ⋅ (� + �) = � ⋅ � + � ⋅ �.
(b) Show that it might be the case that (� + �) ⋅ � ̸≠ � ⋅ � + � ⋅ �.
(c) For which ordinals does the right distribution law hold?

10. Let �, �, and � be ordinals. Prove the following.
(a) � + � ∈ � ⋅ � if and only if � ∈ �.
(b) � + � = � + � if and only if � = �.
(c) If � + � ∈ � + �, then � ∈ �.
(d) � ⋅ � ∈ � ⋅ � if and only if � ∈ � and � ≠ 0.
(e) If � ⋅ � = � ⋅ �, then � = � or � = 0.

11. Prove Theorem 6.4.11.
12. Let �, �, and � be ordinals. Prove the following.

(a) �� ∈ �� if and only if � ∈ � and 1 ∈ �.
(b) If � ∈ �, then �� ⊆ �� .
(c) If �� ∈ �� , then � ∈ �.
(d) If 1 ∈ �, then � ⊆ �� .
(e) If � ∈ �, there exists a unique ordinal  such that � +  = �.

13. Prove that the ordinal ! + ! is not a cardinal.
14. Provide the details for the proof of Theorem 6.4.13.
15. Prove Theorem 6.4.14.
16. Provide the details to the proof of Theorem 6.4.15.
17. Prove the remaining parts of Theorem 6.4.16.
18. Prove that for any natural number n and infinite cardinal �, n ⋅ � = �.
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19. Prove that if � is inifinte, (�+)� = 2� .
20. Is there a cancellation law for ordinals or for cardinals?
21. Prove that �+� = � ⋅� = �, given that � is a countable cardinal and � is an infinite
cardinal.
22. Generalize Exercise 21 by showing that if � and � are cardinals with � infinite
such that � ⪯ �, then � + � = � ⋅ � = �.
23. Let � and � be cardinals with ℵ0 ⪯ �. Show that if 2 ⪯ � ≺ �, then �� = 2�.
24. Prove for all ordinals � that |�| ≺ ℵ� .
25. For all ordinals �, define Hartogs’ function by

Γ(�) = {� : � is an ordinal ∧ � ⪯ �}.
Prove that Γ(�) is an ordinal and � ≺ Γ(�) for all ordinals �.
26. Using Exercise 25, define an initial number !� as follows.

!0 = !,
!+ = Γ(! ),

! =
⋃

�∈
!� if  is a limit ordinal.

Prove that initial numbers are limit ordinals and !1 is the first uncountable ordinal.
27. Prove that there is no greatest initial number.
28. For all ordinals �, show that ℵ� = |!�|. Can we write ℵ� = !�?
29. For all countable ordinals �, show that 2ℵ� = ℵ�+ implies that 2ℵ!1 = ℵ!1+1.

6.5 LARGE CARDINALS

Since every cardinal is a limit ordinal, every cardinal � can be written in the form
� =

⋃

{� : � ∈ �}.
In particular, for the limit cardinal ℵ!+!, we have that

ℵ!+! =
⋃

{� : � ∈ ℵ!+!}. (6.2)
Notice that (6.2) is the union of a set with ℵ!+! elements. However, we also have

ℵ!+! =
⋃

{ℵ� : � ∈ ! + !}, (6.3)
and

ℵ!+! =
⋃

{ℵ!+n : n ∈ !}. (6.4)
Both (6.3) and (6.4) are unions of sets with ℵ0 elements. The next definition is in-
troduced to handle these differences. Since infinite cardinals are limit ordinals, the
definition is given for limit ordinals.
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DEFINITION 6.5.1

The cofinality of a limit ordinal � is denoted by cf (�) and defined as the least
cardinal � such that there exists ℱ ⊆ � with |ℱ | = � and � = ⋃

ℱ .
Observe that cf (�) ⪯ |�| because � =

⋃

�. There can be other sets B such that
� =

⋃

B, and they might have different cardinalities. Any set of ordinals B with this
property is said to be cofinal in �. Moreover, we can write B = {�� : � ∈ �} for some
cardinal �, so

� =
⋃

�∈�
�� ,

and when � = cf (�),
� =

⋃

�∈cf (�)
�� .

EXAMPLE 6.5.2

Since the finite union of a finite set is finite, the cofinality of any infinite set must
be infinite. Therefore, because

! =
⋃

n∈!
n,

we see that cf (!) = ℵ0. Also, since
ℵ! =

⋃

n∈!
ℵn,

we conclude that cf (ℵ!) = ℵ0 and {ℵn : n ∈ !} is cofinal in ℵ!. However,
cf (ℵ1) = ℵ1 because the countable union of countable sets is countable (Theo-
rem 6.3.17).

Regular and Singular Cardinals

Since infinite cardinals are limit ordinals, we can classify the cardinals based on their
cofinalities. We make the following definition.

DEFINITION 6.5.3

A cardinal � is regular if � = cf (�), else it is singular.
Notice that Example 6.5.2 shows that ℵ0 and ℵ1 are regular but ℵ! is singular. This
implies a direction to follow to characterize the cardinal numbers. We begin with the
successors.

THEOREM 6.5.4

Successor cardinals are regular.
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PROOF
Let � be an ordinal and let ℱ ⊆ ℵ�+1 such that ℵ�+1 = ⋃

ℱ . This implies that
|�| ⪯ ℵ� for all � ∈ ℱ . Thus,

⋃

ℱ ⪯ |ℱ | ⋅ ℵ� .

By Theorem 6.4.18, we conclude that ℵ�+1 ⪯ |ℱ |, so cf (ℵ�+1) = ℵ�+1 by the
Cantor–Schröder–Bernstein theorem (6.2.11).

Since ℵ0 is regular, Theorem 6.5.4 tells us where to find the singular cardinals.
COROLLARY 6.5.5

A singular cardinal is an uncountable limit cardinal.
Because we have not proved the converse of Corollary 6.5.5, we investigate the cofi-
nality of certain limit cardinals in an attempt to determine which limit cardinals are
singular.

THEOREM 6.5.6

If � is a limit ordinal, cf (ℵ�) = cf(�).
PROOF

The proof uses the Cantor–Schröder–Bernstein theorem (6.2.11). Let � be a limit
ordinal.

∙ We first show that cf (ℵ�) ⪯ cf(�). Let A be a cofinal subset of � such that
|A| = cf (�). Notice that if � ∈ A, then ℵ� ∈ ℵ� . On the other hand, take
� ∈ ℵ� , which implies that |�| ≺ ℵ� . Therefore, there exists  ∈ � such
that |�| = ℵ . Since A is cofinal in �, there exists � ∈ A such that � ∈ � .
Hence, � ∈ ℵ� , which implies that � ∈ ⋃

{ℵ� : � ∈ A}. Therefore,
ℵ� =

⋃

{ℵ� : � ∈ A},
from which follows,

cf(ℵ�) ⪯ |A| = cf(�).

∙ We now show cf (�) ⪯ cf (ℵ�). Let A ⊆ ℵ� so that ℵ� = ⋃

A and |A| =
cf (ℵ�). Define

ℱ = {� ∈ � : ∃( ∈ A ∧ || = ℵ�)}.

Then, � = ⋃

ℱ is an ordinal by Theorem 6.1.16. For all � ∈ A, we have
that � ∈ ℵ�+1 because |� | ⪯ ℵ� . Hence,

⋃

A ⊆ ℵ� ,

from which follows that � ∈ �, which means that � ⊆ ⋃

ℱ . Therefore,
since the elements of ℱ are ordinals of �, we have that � = ⋃

ℱ , so
cf(�) ⪯ |ℱ | = |A| = cf (ℵ�).
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Theorem 6.5.6 confirms the result of Example 6.5.2 because
cf(ℵ!) = cf(!) = ℵ0. (6.5)

Also,
cf (ℵ!+!) = cf(! + !) = ℵ0, (6.6)

so ℵ!+! is singular. Observe that by (6.5) and (6.6),
cf (cf (ℵ!)) = cf (cf (!)) = cf (ℵ0) = ℵ0

and
cf (cf (ℵ!+!)) = cf (cf (! + !)) = cf(ℵ0) = ℵ0.

The next result generalizes this and proves that cf(cf (�)) = cf (�) for every limit ordinal
�.

THEOREM 6.5.7

For any limit ordinal �, cf (�) is a regular cardinal.
PROOF

Let � be a limit ordinal and write � = ⋃

{A :  ∈ cf (�)}. For every ordinal
 ∈ cf (�), define � = ⋃

�∈ A� . Then, {� :  ∈ cf (�)} is a chain of ordinals
(Theorem 6.1.16) and

� =
⋃

{� :  ∈ cf (�)}.

Now write
cf (�) =

⋃

{� :  ∈ cf(cf (�))}.

Define
B = {�� :  ∈ cf (cf (�))}.

Let � ∈ �. This implies that � ∈ �0 for some 0 ∈ cf (�). Then, 0 ∈ �1 forsome 1 ∈ cf (cf (�)). Hence,
� ∈ �0 ⊆ ��1 ∈ B,

so � ∈ ⋃

B. Therefore, � = ⋃

B, and this implies that cf(�) ⪯ cf (cf (�)). Since
the opposite inequality always holds, by the Cantor–Schröder–Bernstein theorem
(6.2.11), cf (�) = cf (cf (�)), which means that cf (�) is regular.
Although the Continuum Hypothesis cannot be proved, it is possible to discover

some information about the value of 2ℵ0 . Notice how its proof resembles Cantor’s
diagonalization (page 303). It is due to König (1905).

THEOREM 6.5.8 [König]

If � is an infinite cardinal and cf (�) ⪯ �, then � ≺ ��.
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PROOF
Suppose that � is am infinite cardinal number and cf (�) = �. Write

� =
⋃

{�� : � ∈ �}.
Let ℱ = {f� : � ∈ �} be a subset of ��. Define g : �→ � such that

g(�) = least element of � ⧵ {f�(��) : � ∈ ��}.
For any � ∈ �,

g(�) ≠ f�(��) for all � ∈ �� .
Therefore,

g ≠ f� for all � ∈ �� . (6.7)
Since (6.7) is true for all � ∈ � and {�� : � ∈ �} is cofinal in �, we conclude
that g ≠ f� for all � ∈ �. Therefore, g ∉ ℱ , so � ≺ ��. Note that the same
argument leads to this conclusion if cf (�) ≺ � (Exercise 4).
COROLLARY 6.5.9

Let � be an infinite cardinal. Then, � ≺ cf(2�).
PROOF

Suppose that cf (2�) ⪯ �. By König’s theorem (6.5.8), Theorem 6.4.16, and
Corollary 6.4.19,

2� ≺ (2�)cf (2
� ) ⪯ (2�)� = 2�⋅� = 2� .

By Corollary 6.5.9,
ℵ0 ≺ cf(2ℵ0 ),

but by Example 6.5.2, we know that cf (ℵ!) = ℵ0, so
cf(ℵ!) ≺ cf(2ℵ0 ).

Hence, even though we cannot prove what the cardinality of 2ℵ0 is, we do know that it
is not ℵ!.

Inaccessible Cardinals

As we have noted, ℵ0 is both a regular and a limit cardinal. Are there any others with
this property?

DEFINITION 6.5.10

A regular limit cardinal that is uncountable is called weakly inaccessible.
It is not possible using the axioms of ZFC to prove the existence of a weakly inac-
cessible cardinal. Here is another class of cardinals “beyond” the weakly inaccessible
cardinals.
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DEFINITION 6.5.11

The cardinal � is strongly inaccessible if it is an uncountable regular cardinal
such that 2� ≺ � for all � ≺ �.
Since every strongly inaccessible cardinal is weakly inaccessible (Exercise 1), it is

not possible to prove from the axioms of ZFC that a strongly inaccessible cardinal
exists. However, it is apparent that assuming GCH, � is a weakly inaccessible cardinal
if and only if � is a strongly inaccessible cardinal (Exercise 10). Cardinal numbers such
as these are known as large cardinals because assumptions beyond the axioms of ZFC
are required to “reach” them.
Exercises

1. Prove that every strongly inaccessible cardinal is weakly inaccessible.
2. Let n ∈ !. Show that cf (ℵn) = ℵn.
3. For all limit ordinals �, �, and �, show that if � is cofinal in � and � is cofinal in �,
then � is cofinal in �.
4. Rewrite the proof of König’s theorem (6.5.8) assuming that cf (�) ≺ �.
5. Let � and � be limit ordinals. Prove that cf (�) = cf (�) if and only if (�, ⊆) and
(�, ⊆) have order isomorphic cofinal subsets.
6. Let � be a countable limit ordinal. Show that cf (�) = ℵ0.
7. Let � and � be cardinals such that � is infinite and 2 ⪯ �. Show the following.

(a) � ≺ cf (��).
(b) � ≺ �cf (�).

8. Assume GCH and let � and � be ordinals. Prove.
(a) If ℵ� ≺ cf (ℵ�), then ℵℵ�� = ℵ� .
(b) If cf (ℵ�) ⪯ ℵ� ≺ ℵ� , then ℵℵ�� = ℵ�+ .

9. Let � be a limit ordinal. Show that cf (i�) = cf (�). (See Exercise 6.3.22.)
10. Prove that GCH implies that a cardinal is weakly inaccessible if and only if it is
strongly inaccessible.
11. Let � be a cardinal. Prove the following biconditionals.

(a) � is weakly inaccessible if and only if � is regular and ℵ� = �.
(b) � is strongly inaccessible if and only if � is regular and i� = �.



CHAPTER 7

MODELS

7.1 FIRST-ORDER SEMANTICS

We now return to logic. In Section 1.5, we proved that propositional logic is both sound
and complete (Theorems 1.5.9 and 1.5.15). We now do the same for first-order logic.
We have an added complication in that this logic involves formulas with variables.
Sometimes the variables are all bound resulting in a sentence (Definition 2.2.14), but
other times the formula will have free occurrences. We need additional machinery to
handle this. Throughout this chapter, let A be a first-order alphabet and S its set of
theory symbols. We start with the fundamental definition (compare Definition 4.1.1).

DEFINITION 7.1.1

The pair A = (A, a) is an S-structure if A ≠ ∅ and a is a function with domain
S such that

∙ a(c) is an element of A for every constant c ∈ S,
∙ a(R) is an n-ary relation on A for every n-ary relation symbol R ∈ S,
∙ a(f ) is an n-ary function on A for every n-ary function symbol f ∈ S.

A First Course in Mathematical Logic and Set Theory, First Edition. Michael L. O’Leary.
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The set A is the domain of A and is denoted by dom(A). The domain of the
function a is the signature of the structure. If S = {s0, s1, s2,…}, we often
write the structure as

(A, a(s0), a(s1), a(s2),…)

or
(A, sA0 , s

A
1 , s
A
2 ,…)

The font used to identify a structure and its function is the traditional one. It is
called Fraktur and can be found in the appendix.
The purpose of the function a is to associate a symbol with a particular object in

the domain of the structure. For this reason, if s is an element of the signature of the
structure, the object a(s) is called the meaning of s and the symbol s is the name of
a(s).

EXAMPLE 7.1.2

We are familiar with the constant, function, and relation symbols of NT (Exam-
ple 2.1.4). We define an NT-structure A with domain !. To do this, specify the
function a:

a(0) = ∅,
a(1) = {∅},
a(+) = {((m, n), m + n) : m, n ∈ !},
a(⋅) = {((m, n), m ⋅ n) : m, n ∈ !}.

Notice that ∅ is the meaning of 0 and 1 is the name of {∅}. Also, observe
that a(+) and a(⋅) are the addition and multiplication functions on ! (Defini-
tions 5.2.15 and 5.2.18). These operations are usually represented by + and ⋅,
but these symbols already appear in NT. Therefore, for the structure A,

0A = a(0),

1A = a(1),

+A = a(+),

⋅A = a(⋅),

soA = (!, a) is an NT-structure with signature {0, 1,+, ⋅} that can be written as
(!,∅, {∅}, {((m, n), m + n) : m, n ∈ !}, {((m, n), m ⋅ n) : m, n ∈ !})

or, more compactly,
(!, 0A, 1A,+A, ⋅A).
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EXAMPLE 7.1.3

When the symbols of a structure’s signature are not needed to represent the mean-
ings of the symbols, the notation of Example 7.1.2 is not needed. This is common
for GR-structures. For example, if b(e) = 0 and b(◦) = +, then

(ℤ, b) = (ℤ, 0,+)

is a GR-structure with signature {e, ◦} (Example 2.1.5), and if c(e) = 1 and
c(◦) = ⋅, then

(ℝ ⧵ {0}, c) = (ℝ ⧵ {0}, 1, ⋅)

is also a GR-structure with signature {e, ◦}.

Satisfaction

The purpose of a structure is to serve as a universe for a given language. Recall that
the terms of a language represent objects and the formulas of a language describe the
properties of objects (Figure 2.3). With this in mind, we now make sense of the terms
and formulas within structures. The first step in doing this is to define how to give
meaning to terms. This is done so that the terms represent elements of the domain of
a structure. The second step is to develop a method by which it can be determined
which formulas hold true in a structure and which do not. We begin by defining the
interpretation of terms.

DEFINITION 7.1.4

Let A = (A, a) be an S-structure. Define an S-interpretation of A to be a func-
tion I : TERMS(A)→ A that has the following properties:

∙ If x is a variable symbol, then I(x) ∈ A, thus assigning a value to x.
∙ If c is a constant symbol, I(c) = a(c).
∙ If f is a function symbol and t0, t1,… , tn−1 are S-terms,

I(f (t0, t1,… , tn−1)) = a(f )(I(t0), I(t1),… , I(tn−1)).

Definition 7.1.4 is an example of a definition by induction on terms. This means
that first the definition was made for variable and constant symbols, and then assuming
that it was made for terms in general, the definition is made for functions applied to
terms. Induction on terms simply follows Definition 2.1.7. A proof done by induction
on terms is one that uses the same process to prove a result about terms.

EXAMPLE 7.1.5

Let (!, 0A, 1A,+A, ⋅A) be the NT-structure from Example 7.1.2. Let I be an
NT-interpretation such that
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I(x) = 5,
I(y) = 7,

I(0) = 0A,

I(1) = 1A.

Then, I(x + y) = 12 is the interpretation of x + y because
I(x + y) = a(+)(I(x), I(y)) = a(+)(5, 7) = 5 +A 7,

and I(0 ⋅ 1) = 0A because
I(0 ⋅ 1) = a(⋅)(I(0), I(1)) = a(⋅)(0, 1) = 0A ⋅A 1A.

We are now ready for the main definition. It describes what it means for a formula
to be interpreted as true. The definition, which is foundational to model theory, is
generally attributed to Alfred Tarski. This contribution is found in two papers, “Der
wahrheitsbegriff in den formalisierten sprachen” (1935) and “Arithmetical extensions
of relational systems” with Robert Vaught (1957).

DEFINITION 7.1.6

Let A = (A, a) be an S-structure and I be an S-interpretation of A. Assume that
p and q are S-formulas and t0, t1,… , tn−1 are S-terms. Define ⊨ as follows:

∙ A ⊨ t0 = t1 [I]⇔ I(t0) = I(t1).
∙ A ⊨ R(t0, t1,… , tn−1) [I]⇔ (I(t0), I(t1),… , I(tn−1)) ∈ a(R).
∙ A ⊨ ¬p [I]⇔ (not A ⊨ p [I]).
∙ A ⊨ p→ q [I]⇔ (if A ⊨ p [I] then A ⊨ q [I]).
∙ A ⊨ ∃xp [I] ⇔ (A ⊨ p [Iax ] for some a ∈ A), where for every u ∈ A, the
function Iux is the S-interpretation of A such that if y is a variable symbol,

Iux(y) =

{

u if y = x,
I(y) if y ≠ x,

and if c is a constant symbol, Iax (c) = I(c).
Definition 7.1.6 is an example of a definition by induction on formulas. This means

that first the definition was made for the basic formulas involving equality and relation
symbols, and then assuming that it was made for formulas in general, the definition
is made for formulas written using connectives or quantifiers. Induction on formulas
simply follows Definition 2.1.9. A proof done by induction on formulas is one that uses
the same process to prove a result about terms.

Definition 7.1.6 can be extended to the other connectives and the existential quanti-
fier using the next theorem.
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THEOREM 7.1.7

Let A = (A, a) be an S-structure and I be an S-interpretation of A. Assume that
p and q are S-formulas.

∙ A ⊨ p ∧ q [I]⇔ (A ⊨ p [I] and A ⊨ q [I]).
∙ A ⊨ p ∨ q [I]⇔ (A ⊨ p [I] or A ⊨ q [I]).
∙ A ⊨ p [I]↔ q ⇔ (A ⊨ p [I] if and only if A ⊨ q [I]).
∙ A ⊨ ∀xp [I]⇔ (A ⊨ p [Iax ] for all a ∈ A).

PROOF
Since p ∨ q ⇔ ¬p→ q (page 59), we have the following:

A ⊨ p ∨ q [I]⇔ A ⊨ ¬p→ q [I]
⇔ if A ⊨ ¬p [I], then A ⊨ q [I]
⇔ if not A ⊨ p [I], then A ⊨ q [I]
⇔ A ⊨ p [I] or A ⊨ q [I].

Since ∀xp⇔ ¬∃x¬p by QN, we have the following:
A ⊨ ∀xp [I]⇔ A ⊨ ¬∃x¬p [I]

⇔ not A ⊨ ∃x¬p [I]
⇔ not (A ⊨ ¬p [Iax ] for some a ∈ A)
⇔ not (not A ⊨ p [Iax ] for some a ∈ A)
⇔ A ⊨ p [Iax ] for all a ∈ A.

The remaining parts are left to Exercise 1.
EXAMPLE 7.1.8

Let the ST-structureA be defined as (!,∈). Since ST has only relation symbols,
A is called a purely relational structure. Although we usually make a notational
distinction between a name and its meaning, we do not do this with the ∈ sym-
bol. Likewise, the equality symbol = can be used in a formula and during any
interpretation of the formula. To see how this works, define

p := ∀x∀y∀z(x ∈ y ∧ y ∈ z→ x ∈ z).

We show that A ⊨ p for any ST-interpretation I . To determine what needs
to be done to accomplish this, we work backwards using Definition 7.1.6 and
Theorem 7.1.7. Let I be an ST-interpretation and assume that

A ⊨ ∀x∀y∀z(x ∈ y ∧ y ∈ z→ x ∈ z) [I].

This implies that
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A ⊨ x ∈ y ∧ y ∈ z→ x ∈ z [((Iax )
b
y)
c
z] for all a, b, c ∈ !.

How this formula is interpreted is still based on the order of connectives found
in Definition 1.1.5. Therefore, since the conjunction has precedence, we apply
Definition 7.1.6 to find that

for all a, b, c ∈ !, if A ⊨ x ∈ y ∧ y ∈ z [((Iax )by)cz],
then A ⊨ x ∈ z [((Iax )by)cz].

Hence, by Theorem 7.1.7,
for all a, b, c ∈ !, if A ⊨ x ∈ y [((Iax )by)cz] and A ⊨ y ∈ z [((Iax )by)cz],

then A ⊨ x ∈ z [((Iax )by)cz].
We now apply the interpretation using Definition 7.1.4 to find that
for all a, b, c ∈ !, if ((Iax )by)cz(x) ∈ ((Iax )by)cz(y) and ((Iax )by)cz(y) ∈ ((Iax )by)cz(z),

then ((Iax )by)cz(x) ∈ ((Iax )by)cz(z).
Therefore,

for all a, b, c ∈ !, if a ∈ b and b ∈ c, then a ∈ c,
which follows by Theorem 5.2.8. This means that we can back through the steps
to prove that A ⊨ p [I].
Typically, formulas cannot be understood as true or false on their own. They have to

be examined against a given universe. The structure is that universe, and the examining
is done by the interpretation. For this reason, the structure-interpretation pair forms the
basis for our work in first-order logic, so we give it a name.

DEFINITION 7.1.9

Let I be an S-interpretation of the S-structureA. Let p be an S-formula. The pair
(A, I) is called an S-model. Additionally, if A ⊨ p [I], then (A, I) is a model
of p and satisfies p. If (A, I) is not a model of p, write A ̸⊨ p [I].

EXAMPLE 7.1.10

Let A be the NT-structure with domain ! and signature {0, 1,+, ⋅} from Exam-
ple 7.1.2. Let I be an NT-interpretation of A such that

I(x) = 0A, I(xi) = i +A 1A, and I(1) = 1A.
∙ (A, I) is a model of x4 + x7 = x7 + x4 because by Theorem 5.2.17,

I(x4 + x7) = I(x4) +A I(x7)

= 5 +A 8

= 8 +A 5

= I(x7) +A I(x4)
= I(x7 + x4).
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∙ (A, I) is a model of ∀x(x = x2 → x+1 = x2 +1). To see this, take n ∈ !and assume that A ⊨ x = x2 [Inx ]. This implies that n = I(x2). Hence,
n +A 0A = I(x2) +A 0A,

n +A I(1) = I(x2) +A I(1),

Inx (x) +
A Inx (1) = I

n
x (x2) +

A Inx (1),
Inx (x + 1) = I

n
x (x2 + 1).

Therefore, A ⊨ x + 1 = x2 + 1 [Inx ]. We conclude that for all n ∈ !,
if A ⊨ x = x2 [Inx ], then A ⊨ x + 1 = x2 + 1 [Inx ],

so for all n ∈ !,
A ⊨ x = x2 → x + 1 = x2 + 1 [Inx ].

This implies that
A ⊨ ∀x(x = x2 → x + 1 = x2 + 1) [I].

Definition 7.1.9 can be generalized to sets of formulas.
DEFINITION 7.1.11

If (A, I) is an S-model and ℱ is a set of S-formulas,
A ⊨ ℱ [I] if and only if A ⊨ p [I] for all p ∈ ℱ .

If A ⊨ ℱ [I], then (A, I) is a model of ℱ and satisfies ℱ .
For example, using the NT-model of Example 7.1.10, we see that

A ⊨ {x4 + x7 = x7 + x4,∀x(x = x2 → x + 1 = x2 + 1)} [I], (7.1)
so (A, I) is a model of {x4 + x7 = x7 + x4,∀x(x = x2 → x + 1 = x2 + 1)}. Here is amore involved example.

EXAMPLE 7.1.12

Let B be the GR-structure (ℤ, b) so that b is defined by b(e) = 0 and b(◦) = +.
Let the interpretation J have the property that

J (xi) =

{

i∕2 if i is even,
(i + 1)∕2 if i is odd.

∙ B ⊨ ∃x(x7 ◦ x = e) [J ]. This is because
B ⊨ x7 ◦ x = e [J−4x ],
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and this holds since 4 + (−4) = 0.
∙ B ⊨ ∀x∃y(x ◦ y = e) [J ]. To prove this, take n ∈ ℤ. Then,

B ⊨ ∃y(x ◦ y = e) [J nx ]

because
B ⊨ x ◦ y = e [(J nx )

−n
y ].

This last satisfaction holds because −n ∈ ℤ and n + −n = 0.
∙ The previous two satisfactions demonstrate that

B ⊨ {∃x(x7 ◦ x = e),∀x∃y(x ◦ y = e)} [J ]. (7.2)

The previous work with models leads to the following definition.
DEFINITION 7.1.13

The S-formula p is S-satisfiable (denoted by SatSp) if there is an S-structure A
and S-interpretation I such that (A, I) is a model for p. The set of S-formulasℱ
is S-satisfiable (denoted by SatSℱ ) if there is a model for ℱ .

By (7.1), we have that
SatNT{x4 + x7 = x7 + x4,∀x[(x + x5) + x8 = x + (x5 + x8)]},

and by (7.2), we have that SatGR{∃x(x7 ◦ x = e),∀x∃y(x ◦ y = e)}.

Groups

As noted in Example 2.1.5, the GR symbols are intended for the study of a set with a
single binary operation defined on it. The basic example is ℤ with addition. Although
other properties will be added later, the language developed for this is designed to
handle just the basic properties of this pair. Namely, the operation should be associative,
the set should have an identity, and every element should have an inverse. This means
that the axioms that will define this theory will be GR-sentences, and we need only
three.

AXIOMS 7.1.14 [Group]

∙ G1. ∀x∀y∀z [x ◦ (y ◦ z) = (x ◦ y) ◦ z].
∙ G2. ∀x(e ◦ x = x ∧ x ◦ e = x).
∙ G3. ∀x∃y(x ◦ y = e ∧ y ◦ x = e).
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EXAMPLE 7.1.15

Define a GR-structure G = (G, g) by letting the domain G = {0}, g(e) = 0, and
g(◦) = +. The binary operation+ is addition of integers and 0 ∈ ℤ (Section 5.3).
Let I be an interpretation of G. We show that G ⊨ {G1,G2,G3} [I].

∙ Let a, b, c ∈ G. Since 0 is the only element of G, observe that by Defini-
tion 7.1.4,
((Iax )

b
y)
c
z(x ◦ [y ◦ z]) = ((I

a
x )
b
y)
c
z(x) + ((I

a
x )
b
y)
c
z(y ◦ z) (7.3)

= ((Iax )
b
y)
c
z(x) + [((I

a
x )
b
y)
c
z(y) + ((I

a
x )
b
y)
c
z(z)] (7.4)

= 0 + (0 + 0) (7.5)
= 0 + 0 + 0 (7.6)
= [((Iax )

b
y)
c
z(x) + ((I

a
x )
b
y)
c
z(y)] + ((I

a
x )
b
y)
c
z(z) (7.7)

= ((Iax )
b
y)
c
z(x ◦ y) + ((I

a
x )
b
y)
c
z(z) (7.8)

= ((Iax )
b
y)
c
z([x ◦ y] ◦ z). (7.9)

We see that (7.6) follows from (7.5) by Theorem 5.3.5. Therefore, by The-
orem 7.1.7,

G ⊨ x ◦ (y ◦ z) = (x ◦ y) ◦ z [((Iax )
b
y)
c
z] for all a, b, c ∈ G,

which implies that
G ⊨ ∀z[x ◦ (y ◦ z) = (x ◦ y) ◦ z] [(Iax )

b
y] for all a, b ∈ G.

Therefore,
G ⊨ ∀y∀z[x ◦ (y ◦ z) = (x ◦ y) ◦ z] [Iax ] for all a ∈ G,

so
G ⊨ ∀x∀y∀z[x ◦ (y ◦ z) = (x ◦ y) ◦ z] [I].

∙ Let a ∈ G. Again, by Definition 7.1.4,
Iax (e ◦ x) = I

a
x (e) + I

a
x (x) = 0 + 0 = 0 = I

a
x (x),

so by Definition 7.1.6,
G ⊨ e ◦ x = x [Iax ].

Also,
Iax (x ◦ e) = I

a
x (x) + I

a
x (e) = 0 + 0 = 0 = I

a
x (x),

so
G ⊨ x ◦ e = x [Iax ].
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Therefore, by Theorem 7.1.7,
G ⊨ e ◦ x = x ∧ x ◦ e = x [Iax ].

Since a was arbitrarily chosen,
G ⊨ ∀x(e ◦ x = x ∧ x ◦ e = x) [I].

∙ Take a ∈ G. Because
(Iax )

0
y(x ◦ y) = (I

a
x )
0
y(x) + (I

a
x )
0
y(y) = 0 + 0 = 0 = (I

a
x )
0
y(e),

we have
G ⊨ x ◦ y = e [(Iax )

0
y].

Similarly,
G ⊨ y ◦ x = e [(Iax )

0
y],

so
G ⊨ x ◦ y = e ∧ y ◦ x = e [(Iax )

0
y].

Therefore, since 0 ∈ G,
there exists b ∈ G such that G ⊨ x ◦ y = e ∧ y ◦ x = e [(Iax )by],

and since a was arbitrarily chosen, we have that
for all a ∈ G, there exists b ∈ G such that
G ⊨ x ◦ y = e ∧ y ◦ x = e [(Iax )

b
y].

Then, by Definition 7.1.6, we conclude that
for all a ∈ G, G ⊨ ∃y(x ◦ y = e ∧ y ◦ x = e) [Iax ],

so by Theorem 7.1.7,
G ⊨ ∀x∃y(x ◦ y = e ∧ y ◦ x = e) [I].

Based on Example 7.1.15, we conclude that {G1,G2,G3} is GR-satisfiable (Defini-
tion 7.1.13). That is, there exists a model in which G1, G2, and G3 are interpreted as
true. The name of the model was first used by Évariste Galois in the early 1830s.

DEFINITION 7.1.16

A GR-structure that models the group axioms is called a group.
A group with a commutative binary operation, one that satisfies

∀x∀y(x ◦ y = y ◦ x),

is known as an abelian group. It is named after the Norwegian mathematician Niels
Abel. Using the GR-structure G and interpretation I of Example 7.1.15, the set of
GR-sentences {G1,G2,G3,∀x∀y(x ◦ y = y ◦ x)} is shown to be GR-satisfiable.
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EXAMPLE 7.1.17

Using definitions of Examples 4.2.6 and 4.2.9 for ℤ, define
ℤn = {[a]n : a ∈ ℤ},

and on this set, specify + by
[a]n + [b]n = [a + b]n.

As we have seen, the meaning of the symbol + is determined by context. The
+ on the left is the new definition, but the + on the right is standard addition
(Definition 5.3.4). With this definition, a generalization of Example 4.4.30 shows
that + is a binary operation. We check thatG = (ℤn, [0]n,+) is a group. Let I bea GR-interpretation of G such that I(e) = [0]n. We have three axioms to check.

∙ Let [a]n, [b]n, [c]n ∈ ℤn, where a, b, c ∈ ℤ. Observe that by Defini-
tion 7.1.4,
((I [a]nx )[b]ny )[c]nz (x ◦ [y ◦ z])

= ((I [a]nx )[b]ny )[c]nz (x) + ((I [a]nx )[b]ny )[c]nz (y ◦ z) (7.10)
= ((I [a]nx )[b]ny )[c]nz (x) + [((I [a]nx )[b]ny )[c]nz (y) + ((I [a]nx )[b]ny )[c]nz (z)] (7.11)
= [a]n + ([b]n + [c]n)
= [a]n + ([b + c]n)
= [a + (b + c)]n (7.12)
= [a + b + c]n (7.13)
= [a + b]n + [c]n
= ([a]n + [b]n) + [c]n
= [((I [a]nx )[b]ny )[c]nz (x) + ((I [a]nx )[b]ny )[c]nz (y)] + ((I [a]nx )[b]ny )[c]nz (z) (7.14)
= ((I [a]nx )[b]ny )[c]nz (x ◦ y) + ((I [a]nx )[b]ny )[c]nz (z) (7.15)
= ((I [a]nx )[b]ny )[c]nz ([x ◦ y] ◦ z). (7.16)

Therefore,
((I [a]nx )[b]ny )[c]nz (x ◦ [y ◦ z]) = ((I [a]nx )[b]ny )[c]nz ([x ◦ y] ◦ z)

for all [a]n, [b]n, [c]n ∈ ℤn,
which implies that

G ⊨ ∀x∀y∀z [x ◦ (y ◦ z) = (x ◦ y) ◦ z] [I].

Notice that (7.13) follows from (7.12) by Theorem 5.3.5. More impor-
tantly, notice that (7.10), (7.11), (7.14), (7.15), and (7.16) mimic (7.3),
(7.4), (7.7), (7.8), and (7.9) of Example 7.1.15. The other equalities are
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Figure 7.1 The Klein-4 group.

specific to this example. We conclude that in order to prove that G is a
model of G1, we only need to show the work specific to the structure G.
We use this to prove G ⊨ {G2,G3} [I].

∙ Let a ∈ ℤ. Then,
[0]n + [a]n = [0 + a]n = [a]n,

and
[a]n + [0]n = [a + 0]n = [a]n.

Therefore, G ⊨ G2 [I].
∙ Let b ∈ ℤ. Then,

[b]n + [−b]n = [b + (−b)]n = [0]n

and
[−b]n + [b]n = [(−b) + b]n = [0]n.

Hence, G ⊨ G3 [I].
Therefore, G is a group. Moreover, because for all a, b ∈ ℤ,

[a]n + [b]n = [a + b]n = [b + a]n = [b]n + [a]n,

G is an abelian group.

EXAMPLE 7.1.18

The structures (!+,∅,+), (ℤ, 1, ⋅), and (ℝ, 1, ⋅) are not groups, but (ℤ, 0,+),
(ℚ, 0,+), (ℝ, 0,+), (ℚ ⧵ {0}, 1, ⋅), and (ℝ ⧵ {0}, 1, ⋅) are. These are examples
of infinite groups. When the group’s set is finite, we use the term order to refer
to its cardinality. The group G = ({�}, �, ∗), where ∗ = {((�, �), �)}, is the only
group of order 1 (Example 7.1.15). This means that any other group with one
element, such as ({0}, 0,+) or ({1}, 1, ⋅), has the same structure as G. We say
that these three groups are isomorphic. Any two groups of order 2 will be iso-
morphic, and any groups of order 3 will also be isomorphic. There are essentially
two groups of order 4, one being the Klein-4 group (Figure 7.1) and the other
being the group of Example 7.1.17 when n = 4.
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EXAMPLE 7.1.19

All of the examples of groups given so far have been abelian. Here is one that is
not. For all n ∈ ℤ+, defineMn(ℝ) as the set of n × n matrices with real entries.
In other words, each matrix has n rows, n columns, and looks like

⎡

⎢

⎢

⎣

a1,1 · · · a1,n
⋮ ⋱ ⋮
am,1 · · · am,n

⎤

⎥

⎥

⎦

,

where ai,j ∈ ℝ for i = 1,… , n and j = 1,… , n. As an example,
⎡

⎢

⎢

⎣

1 2 3
4 5 6
7 8 9

⎤

⎥

⎥

⎦

∈ M3(ℝ).

Definematrix multiplication for 2 × 2 matrices by
[

a1,1 a1,2
a2,1 a2,2

]

⋅
[

b1,1 b1,2
b2,1 b2,2

]

=
[

a1,1b1,1 + a1,2b2,1 a1,1b1,2 + a1,2b2,2
a2,1b1,1 + a2,2b2,1 a2,1b1,2 + a2,2b2,2

]

.

For example,
[

1 2
3 4

]

⋅
[

0 −1
2 1

]

=
[

4 1
8 1

]

. (7.17)
This multiplication is not commutative because

[

0 −1
2 1

]

⋅
[

1 2
3 4

]

=
[

−3 −4
5 8

]

, (7.18)
but it is associative [Exercise 12(a)]. The identity matrix forM2(ℝ) is

I2 =
[

1 0
0 1

]

.

Notice that I2 is the multiplicative identity. If A ∈ Mn(ℝ), then A is invertible
if there exists B ∈ Mn(ℝ) such that AB = BA = In. For n = 2,

[

2 1
0 −3

]

is invertible, but
[

1 0
5 0

]

is not. All of this can be generalized to any n × n matrix. Finally, define
M∗
n(ℝ) = {A ∈ Mn(ℝ) : A is invertible}.

Let GL(n,ℝ) denote the group (M∗
n(ℝ), In, ⋅). This is called the general linear

group of degree n.
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Consequence

We now generalize the notion of logical implication (Definition 1.2.2) to the theory of
models.

DEFINITION 7.1.20

Letℱ be a set of S-formulas. An S-formula p is an S-consequence ofℱ (written
as ℱ ⊨ p) when A ⊨ ℱ [I] implies A ⊨ p [I] for any S-model (A, I). If
{p} ⊨ q, simply write p ⊨ q.
Definition 7.1.20 implies that if the S-formula q is not an S-consequence ofℱ , there

exists an S-structure A with interpretation I such that A ⊨ ℱ [I] but A ̸⊨ q [I]. For
example, define

p := ∀x∀y(x + y = y + x).
We know that GL(n,ℝ) is a group, but under any GR-interpretation I of GL(n,ℝ),

GL(n,ℝ) ̸⊨ p [I]
because of (7.17) and (7.18). Therefore, p is not an S-consequence of the group axioms
(7.1.14). In other words, not all groups are abelian groups.

EXAMPLE 7.1.21

Suppose that
ℱ = {∀x∀y(x + y = y + x),∀x∃y(x + y = 0)}.

Let (A, I) be an NT-model of ℱ . Let A = dom(A). Then,
A ⊨ ∀x∃y(x + y = 0) [I],

so by Theorem 7.1.7,
for all u ∈ A, A ⊨ ∃y(x + y = 0) [Iux],

which by Definition 7.1.6 implies that
there exists v ∈ A such that for all u ∈ A, A ⊨ x + y = 0 [(Iux)vy].

Hence, for arbitrary a (UI) and particular b (EI) in A,
(Iax )

b
y(+)((I

a
x )
b
y(x), (I

a
x )
b
y(y)) = (I

a
x )
b
y(0).

However, since
A ⊨ ∀x∀y(x + y = y + x) [I],

we find that
(Iax )

b
y(+)((I

a
x )
b
y(x), (I

a
x )
b
y(y)) = (I

a
x )
b
y(+)((I

a
x )
b
y(y), (I

a
x )
b
y(x)),
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so,
(Iax )

b
y(+)((I

a
x )
b
y(y), (I

a
x )
b
y(x)) = (I

a
x )
b
y(0).

Therefore, by EG and UG,
there exists v ∈ A such that for all u ∈ A, I(+)(I(v), I(u)) = I(0),

and we can reverse the steps above to find that
A ⊨ ∃x∀y(y + x = 0) [I],

so we conclude that
ℱ ⊨ ∃x∀y(y + x = 0).

We say that an S-sentence p is valid if∅ ⊨ p and write ⊨ p. This means that if an S-
sentence p is valid, every S-structure is a model of p since every S-structure is a model
of the empty set using any S-interpretation (Exercise 7). For example, ∀x(x = x) and
P ∨ ¬P are valid.

We now connect the notions of consequence and satisfaction.
THEOREM 7.1.22

Let ℱ be a set of S-formulas and p be an S-formula. Then,
ℱ ⊨ p if and only if not SatS ℱ ∪ {¬p}.

PROOF
The following are equivalent:

∙ ℱ ⊨ p.
∙ For every S-model (A, I), if A ⊨ ℱ [I], then A ⊨ p [I].
∙ There does not exist an S-model (A, I) so that A ⊨ ℱ [I] and A ̸⊨ p [I].
∙ There does not exist an S-model (A, I) so thatA ⊨ ℱ [I] andA ⊨ ¬p [I].
∙ There does not exist an S-model (A, I) such that A ⊨ ℱ ∪ {¬p} [I].
∙ Not SatSℱ ∪ {¬p}.

EXAMPLE 7.1.23

Since Zorn’s lemma was proved from the axioms of ZFC (Theorem 5.1.13), as
in Example 7.1.17, we can use the work specific to the proof of Zorn’s lemma to
conclude thatZFC ⊨ Zorn’s lemma, so by Theorem 7.1.22, there is no ST-model
that satisfies ZFC and the negation of Zorn’s lemma.
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EXAMPLE 7.1.24

The S-formula p is valid if ¬p is not S-satisfiable. To see this, suppose that p is
not valid. This means that there is an S-model (A, I) so that A ̸⊨ p [I]. Hence,
by Definition 7.1.6, A ⊨ ¬p [I]. Therefore, Sat{¬p}. That the converse is true
is Exercise 19.

Compare the next definition with Definition 1.3.1.
DEFINITION 7.1.25

Let p and q be S-formulas. Then, p is logically equivalent to q means p ⊨ q if
and only if q ⊨ p.

Notice Definition 7.1.25 implies that the formulas p and q are logically equivalent if and
only if ⊨ (p ↔ q). For example, by De Morgan’s law, ¬(p ∧ q) is logically equivalent
to ¬p ∨ ¬q, and by QN, we conclude that ¬∀xp(x) is logically equivalent to ∃x¬p(x).

Coincidence

Let A = (ℤ, a) and B = (ℤ, b) be GR-structures such that
a(e) = b(e) = 0,
a(◦) = b(◦) = +.

Let I be an GR-interpretation of A and J be a GR-interpretation of B such that
I(x) = J (x) = 3.

Other assignments of these functions are not identified. Consider the following deduc-
tion:

−3 + 3 = 0.
n + 3 = 0 for some n ∈ ℤ.
Iny (y) + I

n
y (x) = I

n
y (e) for some n ∈ ℤ.

Iny (y ◦ x) = I
n
y (e) for some n ∈ ℤ.

A ⊨ y ◦ x = e [Iny ] for some n ∈ ℤ.
Therefore,

A ⊨ ∃y(y ◦ x = e) [I].

By replacing I with J and A with B in the deduction, we conclude that
B ⊨ ∃y(y ◦ x = e) [J ].

Since I and J agree on their interpretations of e, ◦, and x, it is not surprising that
they should agree on their interpretation of any {e, ◦}-formula with x as its only free
variable. The generalization of this to terms and formulas is the next two results.
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LEMMA 7.1.26 [Coincidence for Terms]

Let S and T be sets of theory symbols. Let A = (A, a) be an S-structure and
B = (B, b) be a T-structure such that A = B. Let I be an interpretation of A
and J be an interpretation of B. If I � VAR = J � VAR and a(u) = b(u) for all
u ∈ S ∩ T, then I(t) = J (t) for every (S ∩ T)-term t.

PROOF
By induction on (S ∩ T)-terms.

∙ Let x be a variable symbol. Then, I(x) = J (x) by hypothesis.
∙ Let c be a constant symbol in S ∩ T. We have

I(c) = a(c) = b(c) = J (c).

∙ Suppose I(ti) = J (ti) for all (S∩T)-terms ti with i = 0, 1,… , n−1. Then,
I(f (t0, t1,… , tn−1)) = a(f )(I(t0), I(t1),… , I(tn−1))

= a(f )(J (t0), J (t1),… , J (tn−1))
= b(f )(J (t0), J (t1),… , J (tn−1))
= J (f (t0, t1,… , tn−1)).

LEMMA 7.1.27 [Coincidence for Formulas]

Let S and T be sets of theory symbols. Let A = (A, a) be an S-structure and
B = (B, b) be a T-structure such that A = B. Let I be an interpretation ofA and
J be an interpretation of B. If I � VAR = J � VAR and a(u) = b(u) for every
u ∈ S ∩ T, then A ⊨ p [I] if and only if B ⊨ p [J ] for all (S ∩ T)-formulas p.

PROOF
By induction on (S ∩ T)-formulas.

∙ Let t0 and t1 be (S ∩ T)-terms. Then, by Lemma 7.1.26,
A ⊨ t0 = t1 [I]⇔ I(t0) = I(t1)⇔ J (t0) = J (t1)⇔ B ⊨ t0 = t1 [J ].

∙ Let t0, t1,… , tn−1 be (S∩T)-terms andR a relation symbol of S∩T. Then,
by Lemma 7.1.26,
A ⊨ R(t0, t1,… , tn−1) [I]⇔ (I(t0), I(t1),… , I(tn−1)) ∈ a(R)

⇔ (J (t0), J (t1),… , J (tn−1)) ∈ a(R)
⇔ (J (t0), J (t1),… , J (tn−1)) ∈ b(R)
⇔ B ⊨ R(t0, t1,… , tn−1) [J ].

Now let p be an (S ∩ T)-formula.
∙ A ⊨ ¬p [I]⇔ A ̸⊨ p [I]⇔ B ̸⊨ p [J ]⇔ B ⊨ ¬p [J ].
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∙ Assume that A ⊨ p [I] implies A ⊨ q [I]. Also, suppose that B ⊨ p [J ].
Then, A ⊨ p [I] by induction, so A ⊨ q [I]. Thus, B ⊨ q [J ] by
induction. The converse is proved similarly, so we have

A ⊨ p→ q [I]⇔ if A ⊨ p [I] then A ⊨ q [I]
⇔ if B ⊨ p [J ] then B ⊨ q [J ]
⇔ B ⊨ p→ q [J ].

∙ Note that for all b ∈ A,
Ibx � VAR = J

b
x � VAR

because
Ibx(x) = u = J

b
x (x)

and if y ≠ x,
Ibx(y) = I(y) = J (y) = J

b
x (y).

Therefore, by induction and since A = B,
A ⊨ ∃xp [I]⇔ A ⊨ p [Iax ] for some a ∈ A

⇔ A ⊨ p [J ax ] for some a ∈ B
⇔ A ⊨ ∃xp [J ].

EXAMPLE 7.1.28

Define the sets of theory symbols S = {0, 1,+, ⋅,≤} and T = {0, 1,+, ∗,≥}. Let
A = (!, a) be an S-structure and B = (!, b) be a T-structure where

a(0) = b(0) = ∅,
a(1) = b(1) = {∅},
a(+) = b(+).

Notice, for example, that under the right interpretation, A could be a model of
∀x(x ⋅ 1 = x) since it is an S-formula, but it does not make sense for B to be
a model of the same sentence because ∀x(x ⋅ 1 = x) is not a T-formula. Now,
let I be an S-interpretation of A and J be a T-interpretation of B such that they
agree on all variable symbols. Since we have the hypotheses of Lemma 7.1.27
satisfied, let us confirm the lemma. Consider the (S∩T)-formula ∀x(x+0 = x).
Assume

A ⊨ ∀x(x + 0 = x) [I],

so
A ⊨ (x + 0 = x) [Inx ] for all n ∈ !.

This implies that



Section 7.1 FIRST-ORDER SEMANTICS 351

a(+)(Inx (x), I
n
x (0)) = I

n
x (x) for all n ∈ !.

Since I and J agree on all variable symbols, a(0) = b(0), and a(+) = b(+),
b(+)(J nx (x), J

n
x (0)) = J

n
x (x) for all n ∈ !.

Therefore,
B ⊨ (n + 0 = a) [J nx ] for all n ∈ !,

which gives
B ⊨ ∀x(x + 0 = x) [J ].

The purpose of the coincidence lemmas (7.1.26 and 7.1.27) is to minimize the use
of interpretation functions, especially when modeling sentences.

LEMMA 7.1.29

Let A be an S-structure. If p is an S-sentence,
A ⊨ p [I] if and only if A ⊨ p [J ]

for all S-interpretations I and J of A.
PROOF

Suppose that I and J are S-interpretations of A. Let A ⊨ p [I]. Since p has no
free variables, A ⊨ p [J ] by the proof of Lemma 7.1.27.

Lemma 7.1.29 implies that any interpretation will do when modeling sentences. There-
fore, we make the next definition.

DEFINITION 7.1.30

For any S-sentence p and S-structure A = (A, a), write A ⊨ p if A ⊨ p [I] for
all S-interpretations I of A.

Lemma 7.1.29 can be used to quickly prove the next result.
THEOREM 7.1.31

For any S-structure A and S-sentence p,
A ⊨ p if and only if A ⊨ p [I] for some S-interpretation I of A.

Therefore, letting B be the GR-structure of Example 7.1.12, by (7.2), we have that
B ⊨ ∀x∃y(x ◦ y = 0).

The coincidence lemmas (7.1.26 and 7.1.27) also minimize the use of the sets of
theory symbols. Consider the following.
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THEOREM 7.1.32

Let S ⊆ T be theory symbol sets. If ℱ is a set of S-formulas, ℱ is S-satisfiable
if and only if ℱ is T-satisfiable.

PROOF
Let ℱ be a set of of S-formulas. First, suppose that (A, a) ⊨ ℱ [I], where
dom(a) = S and dom(I) = TERMS(S). Let a′ be an extension of a to T and I ′
be an extension of I such that dom(I ′) = TERMS(T). Notice that this implies
that a and a′ agree on S = S∩T. Therefore, (A, a′) ⊨ ℱ [I ′] by Lemma 7.1.27.

Conversely, assume that (A, a) ⊨ ℱ [I] such that both dom(a) = T and
dom(I) = TERMS(T). Let a′ = a � S and I ′ = I ∩TERMS(S). This implies that
(A, a′) ⊨ ℱ [I ′] by Lemma 7.1.27.
There is terminology to name the relationship between the structures found in the

proof of Theorem 7.1.32. Let the theory symbols S be a subset of the theory symbols
T. Let A = (A, a) be an S-structure and A′(A′, a′) be an T-structure. If A = A′ and
a = a′ � S, we call A′ an expansion of A and A a reduct of A′. Hence, in the first
part of the proof, we started with a structure and then moved to an expansion, and in
the second part, we started with a structure and then moved to a reduct.

Theorems 7.1.31 and 7.1.32 motivate the next two definitions.
DEFINITION 7.1.33

Let S ⊆ T be sets of theory symbols. An S-formula p is satisfiable (denoted by
Sat p) if there exists an T-structure that is a model for p. The set of S-formulas
ℱ is satisfiable (denoted by Sat ℱ ) if there exists an T-structure that is a model
for ℱ .

DEFINITION 7.1.34

Let S ⊆ T be sets of theory symbols. Assume that T is a set of S-sentences. An
S-sentence p is a consequence of T (denoted by T ⊨ p) when A ⊨ T implies
A ⊨ p for every T-structure A.

EXAMPLE 7.1.35

The group axioms state that in a group there is an identity and there are inverses.
Based on what we know about the integers, we should be able to prove more
about these elements. For example, we expect that in a group, both

there is exactly one identity

and
every element has a unique inverse

are true. The uniqueness of the identity is left to Exercise 20. To show the unique-
ness of inverses, let G = (G, e, ◦) be a group, and take a ∈ G. Suppose that
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a′, a′′ ∈ G and are inverses of a. Then,

a′ = a′ ◦ e = a′ ◦ (a ◦ a′′) = (a′ ◦ a) ◦ a′′ = e ◦ a′′ = a′′.

Therefore, the uniqueness of inverses is a consequence (Definition 7.1.34) of the
group axioms.

Rings

Consider the equation 2x + 1 = 0. The exact steps needed to find its solution are

(2x + 1) + −1 = 0 + −1,
2x + (1 + −1) = 0 + −1,

2x + 0 = 0 + −1,
2x = −1,

1∕2(2x) = 1∕2(−1),
(1∕2 ⋅ 2)x = −1∕2,

1x = −1∕2,
x = −1∕2.

Now examine the steps. There are two operations, addition and multiplication. We
used inverses and identities. The associative law was also used. When studying these
steps, we realize that they cannot be performed within (ℤ, 0,+) even though the ini-
tial equation had only integer coefficients. This means that the group idea needs to be
expanded. This is done by including two symbols to represent addition and multipli-
cation. Since these two operations can have their own identities, replace e with ○ to
represent the additive identity. The ideas behind the group axioms are then extended
using RI-sentences.

AXIOMS 7.1.36 [Ring]

∙ R1. ∀x∀y∀z [x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z]
∀x∀y∀z [x ⊗ (y ⊗ z) = (x ⊗ y)⊗ z]

∙ R2. ∀x∀y(x ⊕ y = y ⊕ x)

∙ R3. ∀x(0⊕ x = x)

∙ R4. ∀x∃y(x ⊕ y = ○)

∙ R5. ∀x∀y∀z [x ⊗ (y ⊕ z) = x ⊗ y ⊕ x ⊗ z]
∀x∀y∀z [(x ⊕ y)⊗ z = x ⊗ z ⊕ y ⊗ z]
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DEFINITION 7.1.37

An RI-structureℜ = (R, 0,+, ⋅) that models the ring axioms is called a ring. If
there exists an multiplicative identity in R, thenℜ is a ring with unity.

The additive inverse of a is −a, and the multiplicative inverse of a is a−1 assuming that
a ≠ 0. We usually write a−b instead of a+(−b). Notice that ifℜ = (R, 0,+, ⋅) is a ring,
its reduct (R, 0,+) is a group. Also, letting + and ⋅ denote addition and multiplication
on ℤ,

ℨ = (ℤ, 0,+, ⋅)

is a ring with unity. Also, ℚ, ℝ, and ℂ are the domains of rings with unity using the
typical operations of addition and multiplication.

EXAMPLE 7.1.38

Axioms 7.1.36 do not require that the ring multiplication be commutative. Let
ℜ = (R, 0,+, ⋅). Then,ℜ is a commutative ring. if

ℜ ⊨ ∀x∀y(x ⊗ y = y ⊗ x).

∙ Let + and ⋅ denote standard addition and multiplication on ℤ. Let n ∈ ℤ.
We conclude that S = (nℤ, 0,+, ⋅) is a commutative ring. It is without
unity if n ≠ ±1.

∙ Take [a]n , [b]n ∈ ℤn and define + as in Example 7.1.17 and multiplication
defined by

[a]n ⋅ [b]n = [ab]n .

Then, T = (ℤn, [0]n,+, ⋅) is a commutative ring (Exercise 29).
Axioms 7.1.36 also do not state that when the additive identity is multiplied by
any element of the ring, the result is the additive identity. It is not among the
axioms because it can be proved. Take a ∈ R. By R3, 0 + 0 = 0, so by R5,

0 ⋅ a = (0 + 0) ⋅ a = 0 ⋅ a + 0 ⋅ a.

By R4 and since + is a binary operation,
0 ⋅ a + −(0 ⋅ a) = (0 ⋅ a + 0 ⋅ a) + −(0 ⋅ a).

Because of R1,
0 ⋅ a + −(0 ⋅ a) = 0 ⋅ a + [0 ⋅ a + −(0 ⋅ a)].

Hence, 0 = 0 ⋅ a + 0, which implies that 0 = 0 ⋅ a. Therefore,
ℜ ⊨ ∀x(○ = ○⊗ x),

and ∀x(○ = ○⊗ x) is a consequence (Definition 7.1.34) of the ring axioms.
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EXAMPLE 7.1.39

Let n ∈ ℤ+, definematrix addition onMn(ℝ) entrywise. For instance,
⎡

⎢

⎢

⎣

1 2 1
3 4 −4
5 6 0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

1 0 8
2 −5 0
0 −2 3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

2 2 9
5 −1 −4
5 4 3

⎤

⎥

⎥

⎦

.

Let 0n be the zero matrix. It is the n × n matrix with all of its entries equal to
0. As in Example 7.1.19, let ⋅ represent matrix multiplication and In the identitymatrix. Prove that

Mn(ℝ) = (Mn(ℝ), 0n,+, ⋅)

is a ring.
∙ To see that matrix addition is associative, we rely on the fact that standard
addition of real numbers is associative. Take three matrices from M2(ℝ)and add:

[

a1,1 a1,2
a2,1 a2,2

]

+
([

b1,1 b1,2
b2,1 b2,2

]

+
[

c1,1 c1,2
c2,1 c2,2

])

=
[

a1,1 a1,2
a2,1 a2,2

]

+
[

b1,1 + c1,1 b1,2 + c1,2
b2,1 + c2,1 b2,2 + c2,2

]

=
[

a1,1 + (b1,1 + c1,1) a1,2 + (b1,2 + c1,2)
a2,1 + (b2,1 + c2,1) a2,2 + (b2,2 + c2,2)

]

=
[

(a1,1 + b1,1) + c1,1 (a1,2 + b1,2) + c1,2
(a2,1 + b2,1) + c2,1 (a2,2 + b2,2) + c2,2

]

=
[

a1,1 + b1,1 a1,2 + b1,2
a2,1 + b2,1 a2,2 + b2,2

]

+
[

c1,1 c1,2
c2,1 c2,2

]

=
([

a1,1 a1,2
a2,1 a2,2

]

+
[

b1,1 b1,2
b2,1 b2,2

])

+
[

c1,1 c1,2
c2,1 c2,2

]

.

∙ Since
[

0 0
0 0

]

+
[

a1,1 a1,2
a2,1 a2,2

]

=
[

0 + a1,1 0 + a1,2
0 + a2,1 0 + a2,2

]

=
[

a1,1 a1,2
a2,1 a2,2

]

,

the zero matrix is the additive identity.
∙ To prove that every element ofM2(ℝ) has an additive inverse, take

A =
[

a1,1 a1,2
a2,1 a2,2

]

∈ M2(ℝ).
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Then,
−A =

[

−a1,1 −a1,2
−a2,1 −a2,2

]

because A + (−A) = 02. Generalizing, conclude that
Mn(ℝ) ⊨ {G1,G2,G3},

making the GR-structure (Mn(ℝ), 0n,+) a group.
∙ Matrix addition is commutative because addition on ℝ is commutative.
Therefore, (Mn(ℝ), 0n,+) is an abelian group.

∙ Matrix multiplication is associative.
∙ Lastly, to show that the operations are distributive, we must show for all
A,B, C ∈ M2(ℝ),

A(B + C) = AB + AC

and
(A + B)C = AC + BC.

Therefore,Mn(ℝ) ⊨ {R1,R2,R3,R4,R5}, soMn(ℝ) is a ring.
∙ Since In is the multiplicative identity, ℜ is a ring with unity, and since
matrix multiplication is not commutative, ℜ is a noncommutative ring.
This proves that ∀x∀y(x ⊗ y = y ⊗ x) is not a consequence of the ring
axioms.

EXAMPLE 7.1.40

If R is the domain of a ring, a, b ∈ R ⧵ {0} are zero divisors of the ring means
that a ⋅b = 0. Defining addition and multiplication coordinatewise (Exercise 18),
the ring (ℤ × ℤ, (0, 0),+, ⋅) has zero divisors such as

(1, 0) ⋅ (0, 1) = (0, 0).

Other examples can be found inM2(ℝ) where
[

1 1
0 0

]

⋅
[

1 1
−1 −1

]

=
[

0 0
0 0

]

.

However,
[

1 1
−1 −1

]

⋅
[

1 1
0 0

]

=
[

1 1
−1 −1

]

,

showing that an element can be a left zero divisor but not a right zero divisor.
This situation is common for rings where multiplication is not commutative. We
do, however, havemany rings that do not have zero divisors. An integral domain
is a commutative ring with unity that does not have zero divisors. The rings
(ℤ, 0,+, ⋅), (ℚ, 0,+, ⋅), (ℝ, 0,+, ⋅), and (ℂ, 0,+, ⋅) are integral domains.
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The equation 2x+1 = 0 is written with elements of ℤ and the operations of regular
addition andmultiplication. Althoughℤ has no zero divisors, there is no integer that is a
solution to this equation. To solve the equation, we need the existence of multiplicative
inverses. Let (R, 0,+, ⋅) be a ring with unity. If u ∈ R has the property that there
exists v ∈ R such that u ⋅ v = v ⋅ u = 1, then u is called a unit. Notice that units
are multiplicative inverses of each other. With this terminology, we make the next
definition.

DEFINITION 7.1.41

Let (R, 0,+, ⋅) be a ring with unity.
∙ If all nonzero elements of R are units, R is called a division ring or some-
times a skew field.

∙ A commutative division ring is called a field.
The reason that the equation on page 353 can be solved the way it was is that ℝ with
addition and multiplication form a field.

EXAMPLE 7.1.42

Whileℤ is not a field with standard addition and multiplication,ℚ,ℝ, and ℂ are.
A more interesting structure is (ℤp, [0]p,+, ⋅) when p is a prime. To prove that it
is a field, let [a]p ∈ ℤp so that [a]p ≠ [0]p. We must find an element of ℤp sothat when it is multiplied with [a]p the result is [1]p. Since [a]p ≠ [0]p, p doesnot divide a. Hence, p and a are relatively prime, so there are integers u and v
such that ua + vp = 1. We are then able to calculate:

[u]p ⋅ [a]p = [ua]p
= [1 − vp]p
= [1]p + [−vp]p
= [1]p + [0]p
= [1]p .

EXAMPLE 7.1.43

Letℜ be a division ring and take u and v to be elements of the domain ofℜ. Let
1 be unity. Assume uv = 0 and u ≠ 0. Then, u−1 exists, and we can calculate

u−1(uv) = u−10,

(u−1u)v = 0,
1v = 0,
v = 0.

Therefore,ℜ has no zero divisors.
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Exercises

1. Prove the remaining parts of Theorem 7.1.7.
2. Let 4 be a linear order on a nonempty set A. Let R be a binary relation symbol.
Define the {R}-structure A = (A,4). Let I be an S-interpretation of A such that
I(R) = 4. Prove the following.

(a) A ⊨ ∃x(xRx) [I].
(b) A ⊨ ∀x∀y(xRy ∨ yRx) [I].
(c) A ⊨ ∀x∀y(xRy ∧ yRx→ x = y) [I].

3. LetB be the NT-structure (ℤ, 0B, 1B,+B, ⋅B), where 0B and 1B are the numbers 0
and 1 in ℤ while +B and ⋅B are the standard operations of addition and multiplication
of integers. Let I be a NT-interpretation such that I(x) = 2 and I(y) = −2. Prove the
following.

(a) B ⊨ x + y = 0 [I].
(b) B ⊨ ∃x([x + 1] + 1 = 0) [I].
(c) B ⊨ ∃x∀y(x ⋅ y = y) [I].
(d) B ⊨ ∀x∀y∀z(¬z = 0 ∧ x ⋅ z = y ⋅ z→ x = y) [I].

4. Show that A ⊨ ∀x[(x + x5) + x8 = x + (x5 + x8)], where A is the NT-structure of
Example 7.1.10.
5. Find a set of theory symbols S, an S-structureA, and an S-interpretation I such that
A ⊨ p [I] for each given formula p.

(a) x + y = ([1 + 1] + 1) + 1
(b) x∕y + z = 10
(c) ∃x∃y(x < y ∧ x + 1 = y)
(d) ∀x∀y∀z(xRy ∧ yRz→ zRx)
(e) ∀x∀y(x ⋅ y = 0→ x = 0 ∨ y = 0)

6. For each formula in Exercise 5, find a model (A, I) such that A ̸⊨ p [I] for each
given formula p.
7. Prove that every S-structure is a model of the empty set.
8. Let A be a set. Is (P(A),∅,∩) a group? Explain.
9. Explain why (ℤ+, 0,+), (ℤ, 1, ⋅), and (ℝ, 1, ⋅) are not groups, where the operations
are the standard ones.
10. Suppose that ∗ is an operation on ℤ defined by x ∗ y = x + y + 2.

(a) Identify the identity � and the inverses with respect to ∗.
(b) Prove that (ℤ, �, ∗) is a group, where � is the identity found in Exercise 10(a).
(c) Solve 8 ∗ x = 10.

11. Let 0 represent the zero function ℝ → ℝ and + be function addition. That is, For
all x ∈ ℝ,

(f + g)(x) = f (x) + g(x).
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(a) Prove that (ℝℝ, 0,+) is a group.
(b) Is ℝℝ the domain of a group where the binary operation is function division?

If so, what is its identity?
(c) Is ℝℝ the domain of a group where the binary operation is composition? If

so, what is identity?
12. Let n be a positive integer.

(a) Prove that matrix multiplication is associative.
(b) Solve the equation inM2(ℝ):

[

1 4
−3 0

]

+
[

a b
c d

]

=
[

−3 8
0 −6

]

.

(c) Show thatMn(ℝ) is not the domain of a group under matrix multiplication.
13. Let (G, �, ∗) and (G′, �′, ∗′) be two groups. For all a, b ∈ G and a′, b′ ∈ G′ define
(a, a′) ⋅ (b, b′) = (a ∗ b, a′ ∗′ b′).

(a) Confirm that ⋅ is a binary operation on G × G′.
(b) Show that (G ×G′, (�, �′), ⋅) is a group. Prove that it is abelian if and only if

both of the given groups are abelian.
14. Let n be an integer. Prove that (nℤ, 0,+, ⋅) is a commutative ring.
15. Why is

{[

a b
c d

]

: a, b, c, d,∈ ℤ+
}

not the domain of a ring under the standard matrix operations?
16. Prove that the set

{[

a 0
0 b

]

: a, b ∈ ℝ
}

is the domain of a ring with the standard matrix operations.
17. Both + (function addition) and ◦ (composition) are binary operations on ℝℝ, but
(ℝℝ, 0,+, ◦) is not a ring. Identify which ring axioms fail.
18. Let (R, 0,+, ⋅) and (R′, 0′,+′, ⋅′) be rings. Define addition and multiplication on
R × R′ so that for all (a, b), (c, d) ∈ R × R′,

(a, b) + (c, d) = (a + c, b +′ d),

and
(a, b) ⋅ (c, d) = (a ⋅ c, b ⋅′ d).

Prove that (R × R′, (0, 0),+, ⋅) is a ring.
19. Prove the converse of Example 7.1.24.
20. Prove that

{G1,G2,G3} ⊨ ∀x∀y[∀z(x ◦ z = z ∧ z ◦ x = x)
∧ ∀z(y ◦ z = z ∧ z ◦ y = z)→ x = y].
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21. Let G = (G, �, ∗) be a group so that
G ⊨ ∀x∀y[(a ◦ b) ◦ (a ◦ b) = a ◦ a ◦ b ◦ b].

Show that G is abelian.
22. Prove that ∀x(○⊗ x = ○) is a consequence of the ring axioms.
23. Let − be a unary function symbol. Define RI′ = RI ∪ {−}. Show that the given
sentences are consequences of the ring axioms and ∀x(−x ⊕ x = ○).

(a) ∀x∀y[−(x ⊗ y) = −x ⊗ y ∧ −x ⊗ y = x ⊗ −y]
(b) ∀x∀y(−a ⊗ −b = a ⊗ b)
(c) ∀x∀[−(a ⊕ b) = −a ⊕ −b]
(d) −○ = ○

24. This exercise uses the notation of Exercise 23. Letℜ be a ring with unity. Letℜ′
be the expansion ofℜ to RI′ = RI ∪ {−}. Assume that for all r ∈ dom(ℜ′),

−ℜ(r)⊕ℜ r = ○ℜ.

Prove thatℜ′ ⊨ ∀x[∀y(x ⊗ y = y ∧ y ⊗ x = y)→ ∀z(−z = −x ⊗ z)].

25. Let p and q be S-formulas. Prove that the given S-sentences are valid.
(a) p ∨ ¬p
(b) p→ q ↔ ¬p ∨ q
(c) ∃x(p ∨ q)↔ ∃xp ∨ ∃xq
(d) ∀x(p ∧ q)↔ ∀xp ∧ ∀xq

26. Let R be a binary relation symbols and f be a binary function symbol. Show that
the given sentences are satisfiable.

(a) ∃x(x = x)
(b) ∃x∃y∃z(¬x = y ∧ ¬x = z ∧ ¬y = z)
(c) ∃x∀y(Rxy ∨ x = y)
(d) ∀x∀y(fxy = 1)
(e) ∀x∀y[Rxy→ ∃z(Rxz ∧ Rzy)]

27. Let S and T be sets of theory symbols such that S ⊆ T. Let A be a reduct to S of
the T-structure B. Prove that A ⊨ p if and only if B ⊨ p for all S-sentences p.
28. Suppose that p0, p1,… , pn−1 are S-sentences. For every S-structure A, prove that
A ⊨ p0 ∧ p1 ∧ · · · ∧ pn−1 if and only if A ⊨ pi for all i = 0, 1,… , n − 1.
29. Answer the following about (ℤn, [0]n,+, ⋅):

(a) Prove that addition and multiplication of congruence classes is well-defined.
(b) Show that the additive identity is [0]n.
(c) For all a ∈ ℤ, show that − [a]n = [n − a]n.
(d) Show that [1]n is the multiplicative identity.
(e) Prove that (ℤn, [0]n,+, ⋅) is a commutative ring.
(f) Prove that the ring contains zero divisors when n is not prime.
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30. Prove that ∀x∀y∀z(x⊕ y = x⊕ z→ y = z) is a consequence of the ring axioms.
31. Letℜ be an integral domain. Prove the following.

(a) ℜ ⊨ ∀x∀y(x ⊗ y = ○→ x = ○ ∨ y = 0).
(b) ℜ ⊨ ∀x∀y∀z(x ⊗ y = x ⊗ z ∧ x ≠ ○→ y = z).

32. Suppose that ℜ = (R, 0,+, ⋅) is a commutative ring with unity. Show that if
ℜ ⊨ ∀x∀y∃z(x ⊗ z ⊕ y = ○), thenℜ a field.
33. Is ({0}, 0,+, ⋅) a field? Explain.

7.2 SUBSTRUCTURES

When looking for examples of groups, the GR-structure (ℤ, 0,+) is often the first to
come to mind. The benefit of this example is that not only are we familiar with the
integers but it has the property that many of its subsets also form groups. Let n ∈ ℤ.
Addition on ℤ restricted to nℤ × nℤ is an associative binary operation on nℤ, every
element of nℤ has an additive inverse in nℤ, and 0 ∈ nℤ, so theGR-structure (nℤ, 0,+)
is a group. Since n ≠ ±1 implies that nℤ ⊂ ℤ, there are infinitely many different
examples of GR-structures, all within (ℤ, 0,+). We generalize this idea to arbitrary
structures.

DEFINITION 7.2.1

IfA = (A, a) andB = (B, b) are S-structures,A is a substructure ofB (written
as A ⊆ B) means that A ⊆ B and the following properties hold.

∙ a(c) = b(c) for all constant symbols c.
∙ a(R) = b(R) ∩ An for every n-ary relation symbol R.
∙ a(f ) = b(f ) �An for every n-ary function symbol f .

If A is a substructure of B, then B is an extension of A.
Note the difference between a substructure and a reduct and between an extension

and an expansion (page 352). For all n ∈ ℤ, the group (nℤ, 0,+) is a substructure
of (ℤ, 0,+), and (ℤ, 0,+) is an extension of (nℤ, 0,+). Here both structures have the
same set of theory symbols, and the domain of one is a subset of the other. However,
(ℤ, 0,+) is a reduct of (ℤ, 0, 1,+, ⋅), and (ℤ, 0, 1,+, ⋅) is an expansion of (ℤ, 0,+). In
this case, the domains are the same, but the theory symbol set of the one is a subset of
the theory symbol set of the other.

EXAMPLE 7.2.2

Let R be a binary relation symbol. Let A = ([0, 1] , a) and B = ([0, 2] , b) be
{R}-structures such that a(R) and b(R) are both standard less-than. That is,

a(R) = {(x, y) ∈ ℝ ×ℝ : 0 ≤ x < y ≤ 1}
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and
b(R) = {(x, y) ∈ ℝ ×ℝ : 0 ≤ x < y ≤ 2}.

We conclude that A ⊆ B because of the following:
∙ [0, 1] ⊆ [0, 2].
∙ There are no constant symbols.
∙ a(R) = b(R) ∩ ([0, 1] × [0, 1]).

∙ There are no function symbols.

EXAMPLE 7.2.3

Let n ∈ ℤ. Define the NT-structure B = (ℤ, b), where b(0) is the additive
identity of ℤ, b(1) is the multiplicative identity of ℤ, b(+) is standard addition
on ℤ, and b(⋅) is standard multiplication on ℤ. Let An = (nℤ, a) such that

a(0) = b(0),
a(1) = b(1),
a(+) = b(+) � (nℤ × nℤ),
a(⋅) = b(⋅) � (nℤ × nℤ).

Then, A is a substructure of B.
In particular, Example 7.2.3 gives

A8 ⊆ A4 ⊆ A2,

which implies that A8 ⊆ A2. This is a special case of the next theorem.
THEOREM 7.2.4

Let A, B, and ℭ be S-structures.
∙ A ⊆ A.
∙ If A ⊆ B and B ⊆ ℭ, then A ⊆ ℭ.

PROOF
That A is a substructure of itself is clear, so suppose that A is a substructure of
B and B is a substructure of ℭ. Write A = (A, a), B = (B, b), and ℭ = (C, c).
Then, for all constant symbols c,

a(c) = b(c) = c(c).

Since A ⊆ B, a(R) = b(R) ∩ An, and since B ⊆ ℭ, b(R) = c(R) ∩ Bn for every
n-ary relation symbol R, so

a(R) = c(R) ∩ Bn ∩ An = c(R) ∩ An.
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Also, a(f ) = b(f ) �An and b(f ) = c(f ) �Bn for all n-ary function symbols f ,
so

a(f ) = (c(f ) �Bn) �An = c(f ) �An.

Therefore, A is a substructure of ℭ.

Subgroups

Let a be an element of a group (G, �, ∗). For all positive integers n, define an to be the
result of operating a with itself n times. That is,

a1 = a, a2 = a ∗ a, a3 = a ∗ a ∗ a,…

and
am ∗ an = am+n.

Further, define a0 = e and a−1 to be the inverse of a. With this notation, we observe
that

(a ∗ b)−1 = b−1 ∗ a−1

and
a−n = (an)−1 = (a−1)n.

We then gather all of these elements into a set,
⟨a⟩ = {an : n ∈ ℤ},

and define the following.
DEFINITION 7.2.5

A group G is cyclic if there exists a ∈ dom(G) such that dom(G) = ⟨a⟩. The
element a is called a generator of G.

For example, (ℤ, 0,+) is a cyclic group. Both 1 and −1 are generators. However, ℚ
and ℝ paired with addition do not form cyclic groups. As for finite groups, each ℤn iscyclic, generated by [1]n, but the Klein-4 group (Example 7.1.18) is not cyclic because
a2 = e for all a in the group.

An element a of a group might not generate the entire group, but since e ∈ ⟨a⟩ and
both an and a−n are elements of ⟨a⟩, the set generated by a forms a group using the
operation from G.

DEFINITION 7.2.6

A substructure ℌ of a group G that is a group is called a subgroup of G.
Every group with at least two elements has at least two subgroups, itself (the im-

proper subgroup) and the subgroup with domain {�} (the trivial subgroup). A group
that has at most these two subgroups is called simple. For example, (ℤ2, 0,+) and
(ℤ3, 0,+) form simple groups, but (ℤ4, 0,+) does not because it has a subgroupwith do-main {[0]4, [2]4}. Other examples of nonsimple groups are (ℝ, 0,+) because (ℤ, 0,+)
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is one of its subgroups and (⟨2⟩, 0,+) because (⟨6⟩, 0,+) is one of its subgroups. These
subgroups that are not improper are called proper.

It is tempting to define a subgroup simply as a substructure of a group, but this would
not work if the subgroup is to be a group. For example, viewing ! as a subset of ℤ via
(5.8) allows (!, 0,+) to be a GR-substructure of (ℤ, 0,+), but

(!, 0,+) ⊨ {G1,G2}

yet
(!, 0,+) ̸⊨ G3.

This example suggests the following.
THEOREM 7.2.7

A substructure ℌ of a group G is a subgroup of G if and only if ℌ ⊨ G3.
PROOF

Write G = (G, g) and ℌ = (H, h) and let ℌ ⊆ G. If ℌ is a subgroup, then
ℌ ⊨ G3. To prove the converse, assume ℌ ⊨ G3.

∙ Let x, y, z ∈ H . Since ℎ(◦) = g(◦) � (H ×H),
h(◦)(x, h(◦)(y, z)) = g(◦)(x, g(◦)(y, z))

= g(◦)(g(◦)(x, y), z)
= h(◦)(h(◦)(x, y), z).

The second equality holds because the interpretation of ◦ in G is associa-
tive.

∙ Let x ∈ H . Because h(e) = g(e),
h(◦)(h(e), x) = g(◦)(g(e), x) = x

and
h(◦)(x, h(e)) = g(◦)(x, g(e)) = x.

Therefore, ℌ is a group and, thus, a subgroup of G.
The standard way to show that a subset of a group forms a subgroup is not to show

directly that the set satisfies the three group axioms or to appeal to Theorem 7.2.7.
Instead, what is typically done in algebra is to check that the conditions of the next
theorem are satisfied by the set.

THEOREM 7.2.8

IfG = (G, �, ∗) is a group andH ⊆ G, there exists a subgroup ofGwith domain
H if

∙ H is closed under ∗,
∙ � ∈ H ,
∙ a−1 ∈ H for all a ∈ H .
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PROOF
Suppose that the three hypotheses of the theorem hold.

∙ Let a, b ∈ H . By the first hypothesis, a ∗ b ∈ H . Therefore, ∗ � (H ×H)
is a binary operation onH .

∙ Since ∗ is associative on G, the restriction of ∗ toH must be associative.

∙ The second hypothesis givesH an identity element.

∙ Every element ofH has its inverse inH by the third hypothesis.
Therefore, (H, �, ∗ � [H ×H]) is a group. SinceH ⊆ dom(G), we conclude that
(H, �, ∗ � [H ×H]) is a subgroup of G.
EXAMPLE 7.2.9

To illustrate the theorem, take a group G = (G, �, ∗) and a family of subgroups
(Hi, �, ∗ � [Hi ×Hi]) for all i ∈ I . Although the union of subgroups might not
be a subgroup (Exercise 9), we can show that

(

⋂

i∈I
Hi, �, ∗ �

[

⋂

i∈I
Hi ×

⋂

i∈I
Hi

])

is a subgroup of G.
∙ By Exercise 3.4.22(b),⋂i∈I Hi ⊆ G.

∙ Let a, b ∈ ⋂

i∈I Hi. This means that a, b ∈ Hi for all i ∈ I . Since each
Hi is closed under the operation of G, a ∗ b ∈ Hi for all i ∈ I . Hence,

a ∗ b ∈
⋂

i∈I
Hi.

∙ Since � ∈ Hi for every i ∈ I , we must have � ∈ ⋂

i∈I Hi.

∙ Take a to be an element of ⋂i∈I Hi. Then, a−1 ∈ Hi for all i ∈ I , so
a−1 ∈

⋂

i∈I Hi.

Now we return to cyclic groups.
THEOREM 7.2.10

A subgroup of a cyclic group is cyclic.
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PROOF
Let G = (G, �, ∗) be a cyclic group with generator a. Let ℌ = (H, �, ∗) be a
subgroup ofG. Ifℌ is the trivial subgroup, the subgroup is cyclic with generator
�. So suppose thatℌ is not the trivial subgroup. BecauseG is cyclic, there exists
a least natural number n > 0 such that an ∈ H (Theorem 5.2.13). Suppose that
an is not a generator of ℌ. This means that there exists m ∈ ! with m > n
such that am ∈ H but am ∉ ⟨an⟩. This combined with the division algorithm
(Theorem 4.3.31) yields unique natural numbers q and r such that m = nq + r
and 0 < r < n. Therefore,

am = anq+r = anq ∗ ar,

and from this, we conclude that
ar = a−nq ∗ am.

Since a−nq , am ∈ H , ar is an element ofH . This contradicts the minimality of n
because r < n. Thus, an is a generator of ℌ.

Subrings

Some of the examples of rings had domains that were subsets of other rings. For ex-
ample, nℤ is a subset of ℤ, and ℚ is a subset of ℝ. Generalizing leads to the next
definition.

DEFINITION 7.2.11

A substructureS of a ringℜ that is a ring is called a subring ofℜ.
A subring of ℜ such that its domain is a proper subset of the domain of ℜ is called
a proper subring. The ring itself is called the improper subring. The subring with
domain {0} is the trivial subring.

EXAMPLE 7.2.12

∙ ({[0]9 , [3]9 , [6]9}, [0]9,+, ⋅) is a subring of (ℤ9, [0]9,+, ⋅).
∙ (ℤ, 0,+, ⋅) is a subring of (ℝ, 0,+, ⋅).
∙ (M2(ℝ), 02,+, ⋅) is a subring of (M2(ℂ), 02,+, ⋅).
As with subgroups, a substructure of a ring is not necessarily a subring, but we do

have results similar to those for groups found in Theorems 7.2.8 and 7.2.7. They are
stated without proof since they follow quickly from Definition 7.2.11.

THEOREM 7.2.13

A substructureS of a ringℜ is a subring ofℜ if and only ifS ⊨ R4.
We follow the convention that if ℜ represents an arbitrary ring, ℜ = (R, 0,+, ⋅) and
ifℜ′ also represents an arbitrary ring,ℜ′ = (R′, 0′,+′, ⋅′). This will help us with our
notation.
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THEOREM 7.2.14

Ifℜ is a ring and S ⊆ R, there exists a subring ofℜ with domain S if
∙ S is closed under + and ⋅,

∙ 0 ∈ S,

∙ −a ∈ S for all a ∈ R.

The subring found while proving Theorem 7.2.14 is (S, 0,+ � [S × S], ⋅ � [S × S]).
EXAMPLE 7.2.15

We use Theorem 7.2.14 to show that S = (S, 02,+ � [S × S], ⋅ � [S × S]) is asubring ofM2(ℝ) (Example 7.1.39), where

S =
{[

a 0
0 b

]

: a, b ∈ ℝ
}

.

∙ Let a, b, a′, b′ ∈ ℝ, and assume that

A =
[

a 0
0 b

]

and B =
[

a′ 0
0 b′

]

.

Then,
A + B =

[

a + a′ 0
0 b + b′

]

and
AB =

[

aa′ 0
0 bb′

]

.

These are elements of S.

∙ Clearly, the zero matrix is in S. (Let a = b = 0.)

∙ Take a, b ∈ ℝ and write
A =

[

a 0
0 b

]

.

Hence,
−A =

[

−a 0
0 −b

]

is an element of S.



368 Chapter 7 MODELS

EXAMPLE 7.2.16

Let S and T be subrings of a ring ℜ. Let S be the domain of S and T be the
domain of T. Check the conditions of Theorem 7.2.14 to show that there exists
a subring ofℜ with domain S ∩ T .

∙ To prove closure, let x, y ∈ S∩T . This means that x+y ∈ S and x+y ∈ T .
Hence, x + y ∈ S ∩ T . Similarly, xy ∈ S ∩ T .

∙ Since 0 ∈ S and 0 ∈ T , 0 ∈ S ∩ T .
∙ Suppose x ∈ S ∩ T . Then x ∈ S and x ∈ T . Since these are subrings,
−x ∈ S and −x ∈ T . Thus, −x ∈ S ∩ T .

Ideals

The subringS of the ringℜ in Example 7.2.15 lacks a property that is often desirable
to have in a subring. Observe that

[

1 0
0 1

]

⋅
[

1 2
3 4

]

=
[

1 2
3 4

]

∉ S,

so in general it is false that AB ∈ S and BA ∈ S for all A ∈ S and B ∈ M2(ℝ).
DEFINITION 7.2.17

Letℜ be a ring with domain R and ℑ be a subring ofℜ with domain I .
∙ If ra ∈ I and ar ∈ I for all r ∈ R and a ∈ I , then ℑ is an ideal ofℜ.
∙ If ra ∈ I for all r ∈ R and a ∈ I , then ℑ is a left ideal.
∙ If ar ∈ I for all r ∈ R and a ∈ I , then ℑ is a right ideal.

A ringℜ is an ideal of itself, called the improper ideal ofℜ. All other ideals ofℜ are
proper, including the ideal formed by {0}. Furthermore, in a commutative ring, there
is no difference between a left and right ideal. However, if the ring is not commutative,
a left ideal might not be a right ideal.

EXAMPLE 7.2.18

Define
I =

{[

a 0
b 0

]

: a, b ∈ ℝ
}

.

Using matrix multiplication,
[

x y
z w

]

⋅
[

a 0
b 0

]

=
[

xa + yb 0
za +wb 0

]

∈ I,
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but
[

1 0
1 0

]

⋅
[

1 1
1 1

]

=
[

1 1
1 1

]

∉ I.

Therefore, the subring (I, 02,+ � [I × I], ⋅ � [I × I]) ofM2(ℝ) is a left ideal butnot a right ideal.

EXAMPLE 7.2.19

Let I = {[0]4, [2]4}. Then, ℑ = (I, [0]4,+ � [I × I], ⋅ � [I × I]) is a subring
of the ring ℜ = (ℤ4[0]4,+, ⋅). It also forms an ideal. To see this, check the
calculations:

[0]4 ⋅ [0]4 = [0]4 [0]4 ⋅ [0]4 = [0]4,
[1]4 ⋅ [0]4 = [0]4 [0]4 ⋅ [1]4 = [0]4,
[2]4 ⋅ [0]4 = [0]4 [0]4 ⋅ [2]4 = [0]4,
[3]4 ⋅ [0]4 = [0]4 [0]4 ⋅ [3]4 = [0]4,
[0]4 ⋅ [2]4 = [0]4 [2]4 ⋅ [0]4 = [0]4,
[1]4 ⋅ [2]4 = [2]4 [2]4 ⋅ [1]4 = [2]4,
[2]4 ⋅ [2]4 = [0]4 [2]4 ⋅ [2]4 = [0]4,
[3]4 ⋅ [2]4 = [2]4 [2]4 ⋅ [3]4 = [2]4.

When we multiply any element ofℤ4 by an element of I on either side, the result
is an element of I .

EXAMPLE 7.2.20

Letℜ be a ring. It is left to Exercise 18 to show that the ring
S = (R × {0}, (0, 0),+′, ⋅′)

is a subring of
T = (R × R, (0, 0),+, ⋅)

with+ and ⋅ defined coordinatewise and+′ and ⋅′ being the restrictions of+ and ⋅
toR×{0}. To show thatS is an ideal ofT, let (r, s) ∈ R×R and (a, 0) ∈ R×{0}.
We then calculate

(r, s) ⋅ (a, 0) = (ra, 0) ∈ R × {0}

and
(a, 0) ⋅ (r, s) = (ar, 0) ∈ R × {0}.

EXAMPLE 7.2.21

Letℜ be a ring. Let S and T be subsets of R such that
S = (S, 0,+ � [S × S], ⋅ � [S × S])
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and
T = (T , 0,+ � [T × T ], ⋅ � [T × T ])

are ideals ofℜ. Define
S + T = {s + t : s ∈ S and t ∈ T }.

We prove that S + T is the domain of an ideal ofℜ.
∙ Take x, y ∈ S + T . This means that x = s + t and y = s′ + t′ for some
s, s′ ∈ S and t, t′ ∈ T . Then,

x + y = (s + t) + (s′ + t′)
= s + (t + s′) + t′

= s + (s′ + t) + t′

= (s + s′) + (t + t′).

Thus, x + y ∈ S + T since s + s′ ∈ S and t + t′ ∈ T . Also,
xy = (s + t)(s′ + t′) = (s + t)s′ + (s + t)t′.

Since s + t ∈ R and S is an ideal, (s + t)s′ ∈ S. Likewise, (s + t)t′ is an
element of T . Hence, xy ∈ S + T .

∙ We know that 0 ∈ S + T because 0 = 0 + 0 and 0 ∈ S and 0 ∈ T .
∙ Let s ∈ S and t ∈ T . Then, since −s ∈ S and −t ∈ t,

−(s + t) = −s + −t ∈ S + T .

∙ Let r ∈ R, s ∈ S, and t ∈ T . Since rs ∈ S and rt ∈ T ,
r(s + t) = rs + rt ∈ S + T ,

and since sr ∈ S and tr ∈ T ,
(s + t)r = sr + tr ∈ S + T .

Cyclic subgroups (Definition 7.2.5) are generated by a single element. The corre-
sponding notion in rings is the following definition.

DEFINITION 7.2.22

Letℜ be a ring. For every a ∈ R, define
⟨a⟩ = {ra : r ∈ R}.

Ifℑ is a left ideal ofℜ such that dom(ℑ) = ⟨a⟩ for some a ∈ R, thenℑ is called
a principal ideal left ideal and a is a generator of ℑ. If ℜ is commutative, ℑ
is an ideal ofℜ called a principal ideal.

The set nℤ is the domain of an ideal of the ring (ℤ, 0,+, ⋅). It is a principal ideal because
nℤ = ⟨n⟩. (See Exercises 16 and 21.) In fact, every element of a ring generates a left
ideal of the ring.
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THEOREM 7.2.23

For every ringℜ and a ∈ R, the ring ℑ = (⟨a⟩, 0,+ � [⟨a⟩ × ⟨a⟩], ⋅ � [⟨a⟩ × ⟨a⟩])
is a left ideal ofℜ.

PROOF
First, show that ℑ is a subring.

∙ Let r, s ∈ R. Then, because r + s and (ra)s are elements of dom(R),
ra + sa = (r + s)a ∈ ⟨a⟩

and
(ra)(sa) = [(ra)s] a ∈ ⟨a⟩.

∙ Since 0a = 0 [Exercise 7.1.22], we have that 0 ∈ ⟨a⟩.

∙ If r ∈ R, then (−r)a ∈ ⟨a⟩ and −ra + ra = (−r + r)a = 0a = 0.
To prove that ℑ is a left ideal of ℜ, take r, s ∈ R. Then, r(sa) ∈ ⟨a⟩ because
rs ∈ R and r(sa) = (rs)a.

Notice that a principal left ideal might not be a two-sided ideal. Example 7.2.18 com-
bined with the next example illustrates this fact.

EXAMPLE 7.2.24

Let ℑ = (I, 02,+ � [I × I], ⋅ � [I × I]) be a left ideal ofM2(ℝ), where

I =
{[

a 0
b 0

]

: a, b ∈ ℝ
}

.

By Theorem 7.2.23, it is a principal left ideal ofM2(ℝ) because

I =
⟨[

1 0
0 0

]⟩

.

To prove this, it suffices to take a, b ∈ ℝ and observe that
[

a 0
b 0

]

=
[

a 0
b 0

]

⋅
[

1 0
0 0

]

implies
[

a 0
b 0

]

∈
⟨[

1 0
0 0

]⟩

.
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EXAMPLE 7.2.25

Every ideal in the ring ℨ = (ℤ, 0,+, ⋅) is principal. To see this, let ℑ be an ideal
of ℨ. We must find an element of ℤ that generates I = dom(ℑ). We have two
cases to consider:

∙ If I = {0}, then I = ⟨0⟩.
∙ Suppose I ≠ {0}. This means that I ∩ ℤ+ ≠ ∅. By Theorem 5.2.13 and
Exercise 5.3.1, I must contain a minimal positive integer. Call it m. We
claim that I = ⟨m⟩. It is clear that ⟨m⟩ ⊆ I , so take a ∈ I and divide it by
m. The division algorithm (Theorem 4.3.31) gives q, r ∈ ! so that

a = mq + r

with 0 ≤ r < m. Then, r ∈ I because r = a − mq and a, mq ∈ I .
If r > 0, then we have a contradiction of the fact that m is the smallest
positive integer in I . Hence, r = 0 and a = mq. This means that a ∈ ⟨m⟩.

ℨ is an example of a principal ideal domain, an integral domain in which every
ideal is principal.

Exercises

1. Let R be a binary relation symbol. Define the {R}-structures A = (ℚ, <ℚ) and
B = (ℝ, <ℝ), where <ℚ refers to standard less-than on ℚ and <ℝ refers to standard
less-than on ℝ. Prove that A is a substructure of B.
2. Let A = (A, a), B = (B, b), and ℭ = (C, c) be S-structures such that B ⊆ A and
ℭ ⊆ A. DefineD = (D, d) such that D = B ∩ C , d(c) = a(c) for all constant symbols
c ∈ S, d(R) = b(R) ∩ c(R) for all relation symbols R ∈ S, and d(f ) = b(f ) ∩ c(f ) for
all function symbols f ∈ S. Prove thatD ⊆ A.
3. Let � be a cardinal. Define A� = (A� , a�) to be an S-structure for all � ∈ �. The
family {A :  ∈ �} is called a chain of S-structures if for all � ∈ � ∈ �, we have that
A� ⊆ A� . Define the S-structure ⋃∈� A = (

⋃

∈� A , a) so that for every relation
symbol R ∈ S,

a(R) =
⋃

∈�
a�(R),

and for every function symbol f ∈ S,

a(f ) =
⋃

∈�
a�(f ).

Prove the following.
(a) {a (R) :  ∈ �} is a chain with respect to ⊆ for all relation symbols R ∈ S.
(b) ⋃

∈� a (f ) is a function.
(c) A� ⊆ ⋃

∈� A for all � ∈ �.
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4. Let S ⊆ T be sets of subject symbols. Let A and B be T-structures. Prove that if
A ⊆ B, then the reduct of A to S is a substructure of the reduct of B to S.
5. Find S-substructures of the given S-structures. If possible, find a S-sentence that is
true in the given structure but not true in the substructure.

(a) (ℤ ∪ P(ℤ),∈), S = ST
(b) (!,∅, {∅},+, ⋅), S = NT
(c) (ℂ, 0,+), S = GR
(d) (ℝ, 0,+, ⋅, <), S = OF

6. Let G be a group with domain G. Find all subgroups of G given the following and
assuming the standard operations for each set.

(a) G is the Klein-4 group
(b) G = ℤ5
(c) G = ℤ8
(d) G = ℤ2 × ℤ3
(e) G = ℤ2 × ℤ6

7. Show that {f ∈ ℝℝ : f (0) = 0} is the domain of a subgroup of the group
(ℝℝ, 0,+).
8. DefineH = {A ∈ Mn(ℝ) : a1,1 + a2,2 + · · · + an,n = 0}. Prove that (H, 0n,+) is asubgroup of the group (Mn(ℝ), 0n,+).
9. Let {ℌi : i ∈ I} be a family of subgroups of the groupG. Give an example to show
that⋃i∈I ℌi is not necessarily the domain of a subgroup of G.
10. Let (H, �, ∗ � [H × H]) and (K, �, ∗ � [K × K]) be two subgroups of an abelian
group G = (G, �, ∗). Define

HK = {a ∗ b : a ∈ H ∧ b ∈ K}.

Prove that (HK, �, ∗ � [HK ×HK]) is a subgroup of G.
11. For any group G = (G, �, ∗), let S ⊆ G and define

H = {a ∈ G : a ∗ b = b ∗ a for all b ∈ S}.
Prove that (H, �, ∗ � [H ×H]) is a subgroup of G.
12. Demonstrate that simple groups are cyclic.
13. Prove Theorem 7.2.14.
14. Prove that the subrings of a ring with unity are rings with unity.
15. Let ℜ be a ring with domain R. Find all ideals of ℜ given the following and
assuming the standard operations for each set.

(a) R = ℤ2
(b) R = ℤ6
(c) R = ℤ7
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(d) R = ℤ12
16. Let n ∈ ℤ. Prove that nℤ is the domain of an ideal of the ring (ℤ, 0,+, ⋅).
17. Letℜ = (ℤ × ℤ, (0, 0),+, ⋅).

(a) Prove that {(2m, 2n) : m, n ∈ ℤ} is the domain of an ideal ofℜ.
(b) Prove that {(2n, 2n) : n ∈ ℤ} is not the domain of an ideal ofℜ.
(c) Prove that ℤ × 3ℤ is the domain of a principal ideal ofℜ.
(d) Is {(2m, 2n) : m, n ∈ ℤ} the domain of a principal ideal ofℜ?

18. Prove theS is a subring of T in Example 7.2.20.
19. Letℜ be a ring with unity and ℑ an ideal ofℜ. Let R be the domain ofℜ and I
be the domain of ℑ. Prove that if u is a unit and u ∈ I , then I = R.
20. Prove that a field has no proper, nontrivial ideals.
21. Prove that nℤ is the domain of a principal ideal of the ring (ℤ, 0,+, ⋅) for any
integer n.
22. Show that for any ideal ℑ, if a ∈ dom(ℑ), then ⟨a⟩ ⊆ dom(ℑ).
23. Take a ring ℜ and let a ∈ dom(ℜ). Show ⟨a⟩ is the domain of a left ideal of ℜ
but not necessarily a right ideal ifℜ is not commutative.
24. Let u be a unit of a ringℜ. Show for all a ∈ dom(ℜ), ⟨a⟩ = ⟨ua⟩.
25. An ideal P = (P , 0,+, ⋅) of a commutative ring ℜ = (R, 0,+, ⋅) is prime means
for all a, b ∈ R, if ab ∈ P , then a ∈ P or b ∈ P . Let p ∈ ℤ+ be a prime number
(Example 2.4.18). Prove that (pℤ, 0,+ � pℤ, ⋅ � pℤ) is a prime ideal of (ℤ, 0,+, ⋅).
26. Prove that the trivial subring of an integral domain is a prime ideal.
27. Letℜ be a commutative ring andM a proper ideal ofℜ. If no proper ideal ofℜ
hasM as a proper ideal,M is amaximal ideal ofℜ. Assume that p is a prime number.
Prove that pℤ is the domain of a maximal ideal of (ℤ, 0,+, ⋅).
28. Prove that the trivial ideal is the maximal ideal of a field.
29. Let p ∈ ℤ be prime. Prove that {(pa, b) : a, b ∈ ℤ} is the domain of a maximal
ideal of the ring with domain ℤ × ℤ (Example 7.2.20).
30. Use Zorn’s lemma (Theorem 5.1.13) to prove that every commutative ring with
unity has a maximal ideal.

7.3 HOMOMORPHISMS

The function f : [0,∞)→ (−∞, 0] defined by f (x) = −x preserves ≤ with ≥ (Exam-
ple 4.5.25). Define the {4}-structures A = ([0,∞) , a) and B = ((−∞, 0] , b), where
a(4) = ≤ and b(4) = ≥. When x0, x1 ∈ [0,∞), observe that

(x0, x1) ∈ a(4) if and only if (f (x0), f (x1)) ∈ b(4).
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because
x0 ≤ x1 if and only if −x0 ≥ −x1.

Therefore, we know that4 behaves inB as it behaves inA because of f . We generalize
this notion to all S-structures in the next definition.

DEFINITION 7.3.1

Let A = (A, a) and B = (B, b) be S-structures. A function ' : A → B is a
homomorphism A → B if it preserves the structure of A in B. This means
that ' satisfies the following conditions.

∙ '(a(c)) = b(c) for all constant symbols c ∈ S.
∙ If R is an n-ary relation symbol in S, then for all a0, a1,… , an−1 ∈ A,

(a0, a1,… , an−1) ∈ a(R)

if and only if
('(a0), '(a1),… , '(an−1)) ∈ b(R).

∙ If f is an n-ary function symbol in S, for all a0, a1,… , an−1 ∈ A,
'(a(f )(a0, a1,… , an−1)) = b(f )('(a0), '(a1),… , '(an−1)).

When ' : A→ B is a homomorphism, write ' : A→ B.
There aremany important examples of homomorphisms that can be found in algebra.

For instance, let ℜ and ℜ′ be rings and ' : ℜ → ℜ′ be a homomorphism. By
Definition 7.3.1, this means that

'(0) = 0′.

Because⊕ and⊗ are the only function symbols in RI, for all a, b ∈ R,
'(a + b) = '(a) +′ '(b)

and
'(a ⋅ b) = '(a) ⋅′ '(b).

This together with a similar analysis of homomorphisms between groups motivates the
next definition.

DEFINITION 7.3.2

∙ A group homomorphism is a homomorphism G → G′, where G and G′ are
groups.

∙ A ring homomorphism is an homomorphism ℜ → ℜ′, where ℜ and ℜ′ are
rings.

Throughout this section the focus will be on ring homomorphisms.
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EXAMPLE 7.3.3

Letℜ andℜ′ be rings. The function  : R→ R′ so that  (r) = 0′ for all r ∈ R
is a ring homomorphism. This function is called a zero map.

EXAMPLE 7.3.4

Define the function ' : ℤ → ℤ × ℤ by '(n) = (n, 0). Assume that + and ⋅ are
the standard operations on ℤ while +′ and ⋅′ are the coordinatewise operations
on ℤ × ℤ. Let m, n ∈ ℤ. Then,

∙ '(0) = (0, 0)

∙ '(m + n) = (m + n, 0) = (m, 0) +′ (n, 0) = '(m) +′ '(n)

∙ '(mn) = (mn, 0) = (m, 0) ⋅′ (n, 0) = '(m) ⋅′ '(n).
Therefore, ' is a ring homomorphism (ℤ, 0,+, ⋅)→ (ℤ × ℤ, (0, 0),+′, ⋅′).
The homomorphism of Example 7.3.4 provides a good opportunity to clarify what

a ring homomorphism does. Take the integers 1 and 4. Adding them together in ℤ
yields 5. The images of these integers under ' are '(1) = (1, 0), '(4) = (4, 0), and
'(5) = (5, 0). Observe that (1, 0) + (4, 0) = (5, 0) in ℤ × ℤ, illustrating that the ring
homomorphism ' preserves the addition structure of ℤ in ℤ×ℤ. That is, with respect
to addition, both sets behave the same way. Multiplication also has the property. For
example, when 3 is multiplied with 6 the result is 18 in ℤ, and their images yield
'(3)'(6) = '(18) in ℤ × ℤ. This is illustrated in Figure 7.2.

Although ring homomorphisms will always preserve the additive identity by defini-
tion, this is not a condition that needs to be checked.

ℤ ℤ × ℤ(1, 0)

𝜑

ℤ

𝜑

ℤ × ℤ

(4, 0)

(5, 0)

(3, 0)

(6, 0)

(18, 0)

1

18

6

3

5

4

Figure 7.2 The ring homomorphism ' : ℤ → ℤ × ℤ defined by '(n) = (n, 0).
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THEOREM 7.3.5

Let ℜ and ℜ′ be rings. Then, ' : R → R′ is a ring homomorphism if and only
if for all x, y ∈ R,

∙ '(x + y) = '(x) +′ '(y), and
∙ '(x ⋅ y) = '(x) ⋅′ '(y).

PROOF
Since sufficiency is clear, assume that ' preserves addition and multiplication.
Then,

'(0) +′ '(0) = '(0 + 0) = '(0).

Adding −'(0) to both sides yields '(0) = 0′.
In addition to preserving operations and the additive identity, ring homomorphisms

also preserve inverses. Remember, if ' : R → R′ is a function and a ∈ R, then −a is
the additive inverse of a in R and −'(a) is the additive inverse of '(a) inside of R′.

THEOREM 7.3.6

Let ℜ and ℜ′ be rings. If ' : ℜ → ℜ′ is a ring homomorphism, for all a ∈ R,
'(−a) = −'(a).

PROOF
If ' : ℜ→ ℜ′ is a ring homomorphism, then for all x ∈ R,

'(x) +′ '(−x) = '(x + −x) = '(0) = 0′.

EXAMPLE 7.3.7

Check Theorem 7.3.6 using the function' as defined in the Example 7.3.4. Since
5 and −5 are additive inverses in ℤ, we have that

(5, 0) + (−5, 0) = (0, 0),

so '(5) and '(−5) are additive inverses in ℤ × ℤ.
Ring homomorphisms also preserve subrings and ideals.

THEOREM 7.3.8

Letℜ andℜ′ be rings and ' : ℜ → ℜ′ be a ring homomorphism. Let ℑ be an
ideal ofℜ with domain I and ℑ′ be an ideal ofℜ′ with domain I ′.

∙ If ' is onto, ('[I], 0′,+′ �'[I], ⋅′ �'[I]) is an ideal ofℜ′.
∙ J = ('−1[I ′], 0,+ �'−1[I ′], ⋅ �'−1[I ′]) is an ideal ofℜ.
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PROOF
The first part is left to Exercise 6. To prove the second, first prove that J is a
subring ofℜ.

∙ To show closure, let x1, x2 ∈ '−1[I ′]. This means that '(x1) and '(x2)are elements of I ′. Hence,
'(x1 + x2) = '(x1) +′ '(x2) ∈ I ′

and
'(x1 ⋅ x2) = '(x1) ⋅′ '(x2) ∈ I ′.

Therefore, x1 + x2, x1 ⋅ x2 ∈ '−1[I ′].
∙ Since 0′ ∈ I ′ and '(0) = 0′, it follows that 0 ∈ '−1[I ′].
∙ Let x ∈ '−1[I ′]. Then, '(x) ∈ I ′, and we find that

'(−x) = −'(x) ∈ I ′.

Thus, −x ∈ '−1[I ′].
To see that J is an ideal of ℜ, take r ∈ R and a ∈ '−1[I ′]. This means that
'(a) ∈ I ′. Then,

'(ra) = '(r)'(a) ∈ I ′

since ℑ′ is an ideal. Thus, ra ∈ '−1[I ′]. Similarly, ar ∈ '−1[I ′].
EXAMPLE 7.3.9

The function ' : ℤ → ℤ∕6ℤ defined by '(n) = n + 6ℤ is an onto homomor-
phism. (See Exercise 7.) The image of 2ℤ under this map is

'[2ℤ] = {n + 6ℤ : n ∈ 2ℤ} = {0 + 6ℤ, 2 + 6ℤ, 4 + 6ℤ}.
The pre-image of I = {0 + 6ℤ, 3 + 6ℤ} is

'−1[I] = {n ∈ ℤ : ∃k ∈ ℤ(n = 6k ∨ n = 3 + 6k)} = 3ℤ.

Notice that both'[2ℤ] and'−1[I] are domains of ideals of their respective rings.
Take a ring ℜ and let R be its domain such that |R| ≥ 2. Let 0 be the additive

identity of ℜ. We specify two functions. First, define � : R × R × R → R × R by
�(x, y, z) = (x, y). This is a function similar to that found in Example 4.5.16. Notice
that ran(�) = R × R, which means that � is onto, and

A = {(x, y, z) : �(x, y, z) = (0, 0)} = {(0, 0, z) : z ∈ R}.
Because |A| > 1, we conclude that � is not one-to-one. Second, define the function
 : R × R → R × R × R so that  (x, y) = (x, y, 0). Compare  with Example 4.5.7.
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This function is not onto because ran( ) = R × R × {0}, but it does appear to be
one-to-one because

B = {(x, y) :  (x, y) = (0, 0, 0)} = {(0, 0)}.
The setsA andB that contain the elements of the domain that are mapped to the identity
of the range appear important to determining whether a function is one-to-one. For this
reason, such sets are named.

DEFINITION 7.3.10

Letℜ andℜ′ be rings. Let ' : R→ R′ be a function. The kernel of ' is
ker(') = {x ∈ R : '(x) = 0′}.

Notice that Definition 7.3.10 implies that ker(') = '−1[{0′}]. Therefore, ker(') is
an ideal of ℜ (Theorem 7.3.8). Similarly, because ran(') = '[R], we conclude that
ran(') is an ideal ofℜ′.

EXAMPLE 7.3.11

Let ' : ℤ → ℤ5 defined by '(n) = [n]5 .
∙ To find the kernel, assume '(n) = [0]5. By the assumption, [n]5 = [0]5.So, n ∈ [0]5, which means 5 ∣ n. Hence,

ker(') ⊆ 5ℤ.

Since the steps are reversible, ker(') = 5ℤ.
∙ Because ran(') = {[n]5 ∶ n ∈ ℤ} encompasses all congruence classes
modulo 5, ' is onto and ran(') = ℤ5.

We now prove that the kernel does provide a test for whether a ring homomorphism
is an injection. Since any ring homomorphism ' : ℜ→ ℜ′ maps the additive identity
ofℜ to the additive identity ofℜ′, it is always the case that 0 ∈ ker('). Therefore, to
show that ker(') = {0}, we only need to prove ker(') ⊆ {0}.

THEOREM 7.3.12

Letℜ andℜ′ be rings such that 0 is the additive identity ofℜ. Suppose that the
function ' : ℜ → ℜ′ is a ring homomorphism. Then, ' is one-to-one if and
only if ker(') = {0}.

PROOF
∙ Suppose that ' is one-to-one. Take x ∈ ker('). This means that '(x) = 0′,
where 0′ is the additive identity of ℜ′. Since ' is an injection, x = 0. This
implies that ker(') = {0}.
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∙ Now let ker(') = {0} and assume '(x1) = '(x2), where x1, x2 ∈ dom(ℜ). We
then have '(x1) − '(x2) = 0. Since ' is a homomorphism, we have

'(x1 − x2) = '(x1) − '(x2)

by Theorem 7.3.6. Hence, x1 − x2 ∈ ker('), which means x1 − x2 = 0 by
hypothesis. Therefore, x1 = x2.

A similar proof can be used to demonstrate that same result for group homomorphisms.
THEOREM 7.3.13

Let G and G′ be groups such that � is the additive identity of G. Suppose that
the function ' : G → G′ is a group homomorphism. Then, ' is one-to-one if
and only if ker(') = {�}.

Isomorphisms

Define  : ℤ5×ℤ6 → ℤ6×ℤ5 by  ([a]5, [b]6) = ([b]6, [a]5). Let + be coordinatewise
addition on ℤ5 ×ℤ6 and +′ be coordinatewise addition on ℤ6 ×ℤ5. We prove that this
function preserves addition and is a bijection.

∙ Let a, b, c, d ∈ ℤ. Then,
 (([a]5 , [b]6) + ([c]5 , [d]6)) =  ([a]5 + [c]5 , [b]6 + [d]6)

=  ([a + c]5 , [b + d]6)
= ([b + d]6 , [a + c]5)
= ([b]6 + [d]6 , [a]5 + [c]5)
= ([b]6 , [a]5) +′ ([d]6 , [c]5)
=  ([a]5 , [b]6) +′  ([c]5 , [d]6).

∙ Let ([a]5 , [b]6) ∈ ker( ). In other words, ([b]6 , [a]5) = ([0]6 , [0]5). Hence,
5 ∣ a and 6 ∣ b, which implies that [a]5 = [0]5 and [b]6 = [0]6 (Example 4.2.6).
Thus,  is an injection by Theorem 7.3.13.

∙ To see that  is onto, take ([c]6 , [d]5) ∈ ℤ6 × ℤ5. Then,
 ([d]5 , [c]6) = ([c]6 , [d]5).

The function  generalizes to the next definition. Note the similarity between this
definition and that of an order isomorphism (Definition 4.5.24).

DEFINITION 7.3.14

Let A and B be S-structures. An isomorphism A → B is a homomorphism
A→ B that is a bijection. An isomorphismA→ A is called an automorphism.
If there is an isomorphism ' : A → B, the S-structures are isomorphic and we
write A ≅ B.
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IfA = (ℤ5×ℤ6, ([0]5 , [0]6),+) andB = (ℤ6×ℤ5, ([0]6 , [0]5),+′), then  shows that
A ≅ B.

Like order isomorphisms (Example 4.5.28), there are three basic isomorphism re-
sults. The proof of this is left to Exercise 8.

THEOREM 7.3.15

Let A, B, and ℭ be S-structures.
∙ A ≅ A.
∙ If A ≅ B, then B ≅ A.
∙ If A ≅ B and B ≅ ℭ, then A ≅ ℭ.

EXAMPLE 7.3.16

Let S = {0, <, ⋅}. Let A = (2!, a), where
a(0)(0) = 0 and a(0)(1) = 0,

and for all f, g ∈ 2!,
(f, g) ∈ a(<) if and only if f (0) < g(0) ∨ [f (0) = g(0) ∧ f (1) < g(1)],

that is, < is interpreted as a lexicographical order (compare Exercise 4.3.16), and
a(⋅) is function multiplication.

This means that a(⋅)(f, g)(x) = f (x)g(x). Also, letB = (!×!× {0}, b), where
b(0) = (0, 0, 0),

and for all m, n, m′, n′ ∈ !,
((m, n, 0), (m′, n′, 0)) ∈ b(<) if and only if n < n′ ∨ [n = n′ ∧ m < m′],

and
b(⋅) is coordinate-wise multiplication.

That is,
b(⋅)((m, n, 0), (m′, n′, 0)) = (mm′, nn′, 0).

Show that A ≅ B by showing that ' : A→ B defined by
'( ) = ( (1),  (0), 0)

is an S-isomorphism.
∙ '(a(0)) = (a(0)(1), a(0)(0), 0) = (0, 0, 0) = b(0).
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∙ Let f, g ∈ 2!. Then,
(f, g) ∈ a(<)⇔ f (0) < g(0) ∨ [f (0) = g(0) ∧ f (1) < g(1)]

⇔ ((f (1), f (0), 0), (g(1), g(0), 0)) ∈ b(<)
⇔ ('(f ), '(g)) ∈ b(<).

∙ Let f, g ∈ 2!. Then,
'(a(⋅)(f, g)) = '({(0, f (0)g(0)), (1, f (1)g(1))})

= (f (1)g(1), f (0)g(0), 0)
= b(⋅)((f (1), f (0), 0), (g(1), g(0), 0))
= b(⋅)('(f ), '(g)).

Therefore, ' is an homomorphism. That ' is a bijection is Exercise 9. Hence,
A ≅ B, and by Theorem 7.3.15, we have that B ≅ A.
Because there is a bijection between ℤ5 × ℤ6 and ℤ6 × ℤ5, they have the same

cardinality. Since the bijection that is typically chosen is also a homomorphism, the
algebraic structure of the two rings are the same. Putting this together, we conclude
that the two rings “look” the same as rings. The only difference is in the labeling of
their elements. To formalize this notion, we make the next definition.

DEFINITION 7.3.17

∙ A group homomorphism that is a bijection is a group isomorphism.
∙ A ring homomorphism that is a bijection is a ring isomorphism.

We say that two ringsR andR′ are isomorphic if there is an isomorphism : R→ R′.
If two rings are isomorphic, write R ≅ R′. For example, we saw that

ℤ5 × ℤ6 ≅ ℤ6 × ℤ5.

The next example illustrates what we mean by “looking” the same.
EXAMPLE 7.3.18

Suppose that ' : ℜ→ ℜ′ is a ring isomorphism.
∙ Ifℜ is an integral domain,ℜ′ is an integral domain.
∙ Ifℜ is a division ring,ℜ′ is a division ring.
∙ Ifℜ is a field,ℜ′ is a field.

The proofs of the first two are left to Exercise 13. For example, suppose that ℜ
is a field. We show thatℜ′ is also a field.

∙ Let 1 be unity fromℜ. Then, '(1) is unity fromℜ′ (Exercise 14).
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∙ Let y0, y1 ∈ R′. Since ' is onto, there exists x0, x1 ∈ R so that '(x0) = y0and '(x1) = y1. Hence,
y0 ⋅

′ y1 = '(x0) ⋅′ '(x1)
= '(x0 ⋅ x1)
= '(x1 ⋅ x0)
= '(x1) ⋅′ '(x0)
= y1 ⋅′ y0.

∙ Let y0 ∈ R′ ⧵ {0′}. There exists x0 ∈ R such that '(x0) = y0. Since ' is
one-to-one, x0 ≠ 0. Thus, because ℜ is a field, there exists x1 ∈ R ⧵ {0}such that x0 ⋅ x1 = 1, so

y0 ⋅
′ '(x1) = '(x0) ⋅′ '(x1) = '(x0 ⋅ x1) = '(1).

The result of the next example is known as the fundamental homomorphism theo-
rem.

EXAMPLE 7.3.19

Let ℜ and ℜ′ be rings. Let ' : ℜ → ℜ′ be a surjective ring homomorphism.
Define  : R∕ ker(')→ R′ by

 (a + ker(')) = '(a).

To prove that  is well-defined, let a, b ∈ R such that a + ker(') = b + ker(').
This implies that a − b ∈ ker('), so

0 = '(a − b) = '(a) −′ '(b).

That is, '(a) = '(b). Now to show that  is a ring homomorphism.
∙ Take a, b ∈ R. Then,

 (a + b + ker(')) = '(a + b)
= '(a) +′ '(b)
=  (a + ker(')) +′  (b + ker(')),

and
 (a ⋅ b + ker(')) = '(a ⋅ b)

= '(a) ⋅′ '(b)
=  (a + ker(')) ⋅′  (b + ker(')).

∙ To prove that  is onto, take b ∈ R′. Since ' is onto, there exists a ∈ R
such that '(a) = b. Therefore,

 (a + ker(')) = '(a) = b.
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∙ To prove that  is one-to-one, let a, b ∈ R and assume that  (a) =  (b).
Since  is a ring homomorphism,

 (a − b) =  (a) −′  (b) = 0.

Hence, a − b ∈ ker('), which implies that a + ker(') = b + ker(').

Elementary Equivalence

Let A be a first-order language with theory symbols S. Suppose that A = (A, a) and
B = (B, b) are S-structures and I is an interpretation of A. Let ' : A → B be an
isomorphism. Define

I' : TERMS(A)→ B
by I'(t) = (' ◦ I)(t) for all t ∈ TERMS(A). We confirm that I' is an interpretation of
B.

∙ If x is a variable symbol, I'(x) = (' ◦ I)(x) ∈ B.
∙ Let c be a constant symbol. Then, I'(c) = (' ◦ I)(c) = '(a(c)) = b(c).
∙ Let f be an n-ary function symbol and t0, t1,… , tn−1 ∈ TERMS(A). Then,

I'(f (t0, t1,… , tn−1)) = (' ◦ I)(f (t0, t1,… , tn−1))
= '(a(f )(I(t0), I(t1),… , I(tn−1)))
= b(f )('(I(t0)), '(I(t1)),… , '(I(tn−1)))
= b(f )(I'(t0), I'(t1),… , I'(tn−1)).

An example will clarify the use of the interpretation I'.
EXAMPLE 7.3.20

Let G0 = (ℤ, 0,+) and G1 = (2ℤ, 0,+ � 2ℤ). Assume that I is an interpretation
of G0. Define the group isomorphism f : ℤ → 2ℤ by f (n) = 2n. We consider
the GR-formula y ◦ x = e.
A ⊨ ∃x(y ◦ x = e) [I]⇔ A ⊨ (y ◦ x = e) [Iax ] for some a ∈ ℤ

⇔ Iax (y ◦ x) = I
a
x (e) for some a ∈ ℤ

⇔ f (Iax (y ◦ x)) = f (I
a
x (e)) for some a ∈ ℤ

⇔ f (Iax (y)) + f (I
a
x (x)) = f (I

a
x (e)) for some a ∈ ℤ

⇔ f (Iax (y)) + f (a) = f (I
a
x (e)) for some a ∈ ℤ

⇔ f (Ibx(y)) + b = f (I
b
x(e)) for some b ∈ 2ℤ

⇔ f (Ibx(y)) + f (I
b
x(x)) = f (I

b
x(e)) for some b ∈ 2ℤ

⇔ f (Ibx(y ◦ x)) = f (I
b
x(e)) for some b ∈ 2ℤ

⇔ B ⊨ y ◦ x = e [(If )bx] for some b ∈ 2ℤ
⇔ B ⊨ ∃x(y ◦ x = e) [If ].



Section 7.3 HOMOMORPHISMS 385

Using f , we see that the interpretation of A gives rise to an interpretation of B.
For example, notice that if I(y) = 3, then f (I(y)) = 6. Hence, in A,

∃x(y ◦ x = e) is interpreted as 3 + x = 0 for some x ∈ A,
and the witness of ∃x(y ◦ x = e) is −3. In B,

∃x(y ◦ x = e) is interpreted as 6 + x = 0 for some x ∈ B
and the witness of ∃x(y ◦ x = e) is −6.

LEMMA 7.3.21

Let A = (A, a) and B = (B, b) be S-structures. Assume that ' : A → B is an
isomorphism. Let I be an S-interpretation of A. Then, (Iax )' = (I')'(a)x for all
a ∈ A.

PROOF
We proceed by induction on terms, relying on Definitions 7.1.4 and 7.3.1.

∙ Let x and y be variable symbols. Then,
(Iax )'(x) = '(I

a
x (x)) = '(a) = (I')

'(a)
x (x),

and if y ≠ x,
(Iax )'(y) = '(I

a
x (y)) = '(I(y)) = (I')

'(a)
x (y).

∙ If c is a constant symbol, then
(Iax )'(c) = '(I

a
x (c)) = '(I(c)) = (I')

'(a)
x (c).

∙ Let f be an n-ary function symbol and t0, t1,… , tn−1 be S-terms. Take
a ∈ A. Then,

(Iax )'(f (t0, t1,… , tn−1))
= '(Iax (f (t0, t1,… , tn−1)))
= '(a(f )(Iax (t0), I

a
x (t1),… , Iax (tn−1)))

= b(f )('(Iax (t0)), '(I
a
x (t1)),… , '(Iax (tn−1)))

= b(f )((Iax )'(t0), (I
a
x )'(t1),… , (Iax )'(tn−1))

= b(f )(((I')'(a)x )(t0), ((I')'(a)x )(t1),… , ((I')'(a)x )(tn−1))

= (I')'(a)x (f (t0, t1,… , tn−1)).

The fifth equality follows by induction.
If ' : A → B is an isomorphism, the structures look the same. Thus, formulas

should be interpreted in B essentially in the same way that they are interpreted in A.
In other words, given an interpretation I of A, there should be an interpretation of B
that is like I . This interpretation is I'.
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LEMMA 7.3.22

Let A and B be S-structures with isomorphism ' : A → B. Assume that I is
an S-interpretation of A. Then, for every S-formula p, A ⊨ p [I] if and only if
B ⊨ p [I'].

PROOF
We proceed by induction on formulas, relying on Theorem 7.1.7.

∙ Suppose that t0 and t1 are S-terms. Since ' is one-to-one,
A ⊨ t0 = t1 [I]⇔ I(t0) = I(t1)

⇔ '(I(t0)) = '(I(t1))
⇔ I'(t0) = I'(t1)
⇔ B ⊨ t0 = t1 [I'].

∙ Let R be an n-ary relation symbol and t0, t1,… , tn−1 be S-terms. Since '
is an isomorphism,

A ⊨ R(t0, t1,… , tn−1) [I]
⇔ (I(t0), I(t1),… , I(tn−1)) ∈ I(R)
⇔ ('(I(t0)), '(I(t1)),… , '(I(tn−1))) ∈ '(I(R))
⇔ (I'(t0), I'(t1),… , I'(tn−1)) ∈ I'(R)
⇔ B ⊨ R(t0, t1,… , tn−1) [I'].

∙ Assume that q is an S-formula. Then,
A ⊨ ¬q [I]⇔ A ̸⊨ q [I]⇔ B ̸⊨ q [I']⇔ B ⊨ ¬q [I'],

where the middle equivalence holds by induction.
∙ Let q and r be S-formulas. Suppose that A ⊨ q → r [I]. This means that
A ⊨ q [I] implies A ⊨ r [I]. Assume B ⊨ q [I']. By induction, we
have that A ⊨ q [I], whence A ⊨ r [I]. Again, by induction, B ⊨ r [I'].Therefore, B ⊨ q → r [I']. The converse is proved similarly.

∙ Let q be an S-formula. Then, by Lemma 7.3.21 and since ' is an isomor-
phism,

A ⊨ ∃xq [I]⇔ A ⊨ q [Iax ] for some a ∈ A
⇔ B ⊨ q [(Iax )'] for some a ∈ A
⇔ B ⊨ q [(I')'(a)x ] for some a ∈ A
⇔ B ⊨ q [(I')bx] for some b ∈ B
⇔ B ⊨ ∃xq [I'].
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Let G1 = (2ℤ, 0,+) and G2 = (3ℤ, 0,+). These isomorphic groups are infinite
and cyclic, each with exactly two generators. The group G1 is generated by 2 and
−2, and G2 is generated by 3 and −3. When Lemma 7.3.22 is restricted to sentences,
we conclude that isomorphic structures model the same sentences. Hence, the GR-
sentences satisfied byG1 are exactly those GR-sentences satisfied byG2. For example,

G1 ⊨ ∀x∀y(x ◦ y = y ◦ x),

and
G2 ⊨ ∀x∀y(x ◦ y = y ◦ x).

Also,
G1 ⊨ ∃x∀y∃z(y = x ◦ z),

and
G2 ⊨ ∃x∀y∃z(y = x ◦ z).

Therefore, we make the next definition and follow it immediately with the theorem that
follows from Lemma 7.3.22 and Theorem 7.1.31.

DEFINITION 7.3.23

The S-structuresA andB are elementary equivalent (denoted byA ≡ B) if for
all S-sentences p, A ⊨ p if and only if B ⊨ p.

THEOREM 7.3.24

For all S-structures A and B, if A ≅ B, then A ≡ B.
Theorem 7.3.24 implies that if structures are isomorphic, there is no first-order sen-

tence that can be used to distinguish between the two. That is, there is no sentence p
such that A ⊨ p but B ̸⊨ p when A ≅ B. Conversely, if there is a sentence that is
satisfied by one structure but not the other, the structures cannot be isomorphic.

EXAMPLE 7.3.25

Let A and B be ST-structures such that A = (!+,∈) and B = (!,∈). Observe
that

A ⊨ ∃x∀y(y ∈ x ∨ y = x)

but
B ̸⊨ ∃x∀y(y ∈ x ∨ y = x).

Therefore, by Theorem 7.3.24, we have that A is not isomorphic to B.

EXAMPLE 7.3.26

Let A = (A, a) and B = (B, b) be {R}-structures, where R is a binary relation
symbol. Let A = {a0, a1} with a0 ≠ a1. Assume that the structures are not
isomorphic yet A ≡ B. Define

p := ∃x(x = x),
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q := ∀x∃y(x ≠ y),
and

r := ∀x∀y∀z(x ≠ y ∧ x ≠ z→ y = z).
Then,A ⊨ p becauseA is nonempty,A ⊨ q becauseA has at least two elements,
and A ⊨ r because A has at most two elements. Hence,

A ⊨ p ∧ q ∧ r.

Since A ≡ B, we have that B ⊨ p ∧ q ∧ r, so |B| = 2. Write B = {b0, b1} with
b0 ≠ b1. This implies that there are only two bijections A → B. Call them '0and '1, and write

'0 = {(a0, b0), (a1, b1)}
and

'1 = {(a0, b1), (a1, b0)}.
By assumption, neither of these functions are {R}-homomorphisms, so they fail
to preserve R. Suppose that (a0, a1) ∈ a(R) is the particular element that causes
the second condition of Definition 7.3.1 to fail. Therefore,

A ⊨ ∃x∃y[x ≠ y ∧ R(x, y)].

Since '0 does not preserve R, (b0, b1) ∉ b(R), and since '1 does not preserve
R, (b1, b0) ∉ b(R). Hence,

B ̸⊨ ∃x∃y[x ≠ y ∧ R(x, y)],

which is impossible because A ≡ B, so '0 or '1 must be an {R}-isomorphism.
The argument generalizes for all structures with a domain of cardinality 2 (Exer-
cise 17) and then to all structures with a finite domain (Exercise 18). Therefore,
the converse of Theorem 7.3.24 holds, provided that the domains of the structures
are finite.

Elementary Substructures

Let A = (A, a) and B = (B, b) be S-structures such that A ⊆ B. Let I be an interpre-
tation of A. By Definition 7.1.4, we have the following:

∙ For all variable symbols x, I(x) ∈ A ⊆ B.
∙ For all constant symbols c, I(c) ∈ A ⊆ B.
∙ For all n-ary function symbols f and S-terms t0, t1,… , tn−1, because I(tk) ∈ Afor k = 0, 1,… , n − 1 and a(f ) = b(f ) �An,

I(f (t0, t1,… , tn−1)) = a(f )(I(t0), I(t1),… , I(tn−1))
= b(f )(I(t0), I(t1),… , I(tn−1)).

This implies that I is also an interpretation ofB. Moreover, when p is a quantifier-free
S-formula, the interpretation of p in B requires no element of B ⧵ A. This implies the
next theorem. Its proof is left to Exercise 21.
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THEOREM 7.3.27

Let A and B be S-structures such that A ⊆ B. For all S-interpretations I of A
and all quantifier-free S-formulas p, A ⊨ p [I] if and only if B ⊨ p [I].
Next, consider B ⊨ ∃xp [I]. This means that B ⊨ p [Ibx] for some b ∈ B. If b is

also in A, then A ⊨ p [Ibx], but this conclusion is not guaranteed if b ∈ B ⧵ A. For
example, letA = (ℤ, <) andB = (ℚ, <) be {R}-structures, whereR is a binary relation
symbol. Since ℤ ⊆ ℚ, we have that A is a substructure of B. However, because of
differences between ℚ and ℤ,

B ⊨ ∀x1∀x2∃y(x1 < y < x2)

but
A ̸⊨ ∀x1∀x2∃y(x1 < y < x2).

Hence, in order for A ⊨ p [I] if and only if B ⊨ p [I] for even quantified formulas p,
a stronger condition is required.

DEFINITION 7.3.28

A is an elementary substructure ofB (written as A ⪯ B) if A ⊆ B and for all
interpretations I of A and S-formulas p,

A ⊨ p [I] if and only if B ⊨ p [I].
If A ⪯ B, then B is an elementary extension of A.
Suppose thatA andB are S-structures such thatA is an elementary substructure of

B. Let p be an S-sentence. Since p is also an S-formula, A ⊨ p if and only if B ⊨ p
by Definition 7.3.28. Therefore, A and B are elementary equivalent, proving the next
result.

THEOREM 7.3.29

Let A and B be S-structures. If A ⪯ B, then A ≡ B.
However, the converse of Theorem 7.3.29 does not hold. It is possible for A ⊆ B
and A ≡ B yet A not be an elementary substructure of B. If this is to be the case,
there must be a formula p with at least one free variable that is satisfied by one of the
structures but not the other.

EXAMPLE 7.3.30

Let A = ([0, 1] , a) and B = ([0, 2] , b) be the {R}-structures of Example 7.2.2,
where a(R) is standard < on [0, 1] and b(R) is standard < on [0, 2]. Recall that
A is a substructure of B. Since f defined by f (x) = 2x is an {R}-isomorphism
[0, 1] → [0, 2], we conclude that A ≡ B (Theorem 7.3.24). However, define the
formula

p(x) := ∃yR(x, y)
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and let I be an interpretation such that I(x) = 1. Then,
A ̸⊨ p(x) [I]

and
B ⊨ p(x) [I].

Therefore, A is not an elementary substructure of B.
Because of Theorem 7.3.27, proving that one structure is an elementary substructure

of another reduces to a check of one particular condition. This condition is found in
the next theorem, which is due to Tarski and Vaught (1957).

THEOREM 7.3.31 [Tarski–Vaught]

Let A and B be S-structures such that A ⊆ B. Let A be the domain of A. The
following are equivalent.

∙ A is an elementary substructure of B.
∙ For every S-formula p and S-interpretation I of A,

if B ⊨ ∃xp [I] then B ⊨ p [Iax ] for some a ∈ A. (7.19)
PROOF

Suppose that A ⪯ B. Let p be an S-formula and I an S-interpretation of A. Let
B ⊨ ∃xp [I]. By hypothesis, we have that A ⊨ ∃xp [I]. Thus, A ⊨ p [Iax ] forsome a ∈ A, so again by hypothesis, B ⊨ p [Iax ] for some a ∈ A.

Conversely, let p be an S-formula and I an S-interpretation ofA. We proceed
by induction on formulas to show that A ⪯ B.

∙ If p is t0 = t1 orR(t0, t1,… , tn−1) for S-terms t0, t1,… , tn−1, then p has noquantifiers, and the result follows by Theorem 7.3.27.
∙ Let p be ¬q. Then,

A ⊨ p [I]⇔ A ⊨ ¬q [I]
⇔ A ̸⊨ q [I]
⇔ B ̸⊨ q [I]
⇔ B ⊨ ¬q [I]
⇔ B ⊨ p [I].

∙ Suppose p is q → r. Assume that A ⊨ q → r [I] and letB ⊨ q [I]. Then,
A ⊨ q [I] by induction, so A ⊨ r [I]. Again, by induction, B ⊨ r [I].
Therefore, B ⊨ r→ q [I]. The converse is proved similarly.

∙ Now let p be ∃xq. First, because A ⊆ B,
A ⊨ ∃xq [I]⇒ A ⊨ q [Iax ] for some a ∈ A

⇒ B ⊨ q [Iax ] for some a ∈ B
⇒ B ⊨ ∃xq [I].
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Second, by (7.19),
B ⊨ ∃xq [I]⇒ B ⊨ q [Iax ] for some a ∈ A

⇒ A ⊨ q [Iax ] for some a ∈ A
⇒ A ⊨ ∃xq [I].

EXAMPLE 7.3.32

Prove that A = (ℚ,≤) is an elementary substructure of B = (ℝ,≤). To do this,
follow the test given by Theorem 7.3.31. Let p be an S-formula and I be an
S-interpretation of A. Assume that B ⊨ ∃xp [I]. This implies that

B ⊨ p [Ibx] for some b ∈ ℝ.
Take a0, a1, a ∈ ℚ such that b, a ∈ (a0, a1) and define the functions

f0 : (−∞, a0]→ (−∞, a0],
f1 : (a0, a)→ (a0, b),
f2 : [b, a1)→ [a, a1),
f3 : [a1,∞)→ [a1,∞),

so that f0 is the identity on (−∞, a0], f3 is the identity on [a1,∞), and f1 and
f2 are order isomorphisms (Exercise 22). Let f = f0 ∪ f1 ∪ f2 ∪ f3. Then,
f is an order isomorphism ℝ → ℝ such that f (b) = a, f (a0) = f (a0), and
f (a1) = f (a1). Hence, f is an automorphism (Exercise 23). Therefore, by
Lemmas 7.3.21 and 7.3.22,

B ⊨ p [Ibx]⇔ B ⊨ p [(I
b
x)f ]⇔ B ⊨ p [(If )

f (b)
x ],

which implies that
B ⊨ p [Ibx] for some b ∈ ℚ.

Thus, A ⪯ B, which also implies that A ≡ B (Theorem 7.3.29).
Notice that this example implies that there is no first-order sentence that can dis-

tinguish between (ℚ, <) and (ℝ, <) even though they are not isomorphic. Also, this
example shows that the converse of Theorem 7.3.24 is false if the domains of the struc-
tures are infinite.

Certainly, for all S-structures A, B, and ℭ, we have the following by Exercise 19:
∙ A ≡ A.
∙ If A ≡ B, then B ≡ A.
∙ If A ≡ B and B ≡ ℭ, then A ≡ ℭ.

Similar to this and Theorem 7.2.4, we have the following result for elementary sub-
structures.
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THEOREM 7.3.33

Let A, B, and ℭ be S-structures.
∙ A ⪯ A.
∙ If A ⪯ B and B ⪯ ℭ, then A ⪯ ℭ.
∙ If A ⪯ ℭ, B ⪯ ℭ, and A ⊆ B, then A ⪯ B.

PROOF
We prove the second part and leave the others to Exercise 25. Let A ⪯ B and
B ⪯ ℭ. This first means that A ⊆ B and B ⊆ ℭ. Thus, by Theorem 7.2.4,
A ⊆ ℭ. Let I be an interpretation of A. The proof is completed for quantifier-
free formulas using Theorem 7.3.27 (Exercise 24), so let p be an S-formula with
a quantifier.

∙ Suppose A ⊨ ∃xp [I]. This implies that A ⊨ p [Iax ] for some a ∈ A.
Then,B ⊨ p [Iax ] from which it follows that ℭ ⊨ p [Iax ]. Since A ⊆ C , we
conclude that ℭ ⊨ ∃xp [I].

∙ Conversely, let ℭ ⊨ ∃xp [I]. By Theorem 7.3.31, there exists b ∈ B such
that ℭ ⊨ p [Ibx]. By hypothesis, B ⊨ p [Ibx], so B ⊨ ∃xp [I]. Again,
by Theorem 7.3.31, there exists a ∈ A such that B ⊨ p [Iax ]. From this
follows that A ⊨ p [Iax ], whence A ⊨ ∃xp [I].

Exercises

1. Let A, B, and ℭ be S-structures such that A ⊆ B. Let ' : B → ℭ be a homomor-
phism. Prove that '[dom(A)] is the domain of a substructure of ℭ.
2. Prove that the following are group homomorphisms. Assume in each instance that
◦ is interpreted as the standard addition on the set.

(a) ' : ℤ × ℤ → ℤ where '(a, b) = a
(b) ' : ℤ12 → ℤ6 where '([a]12) = [a]6
(c)  : ℤ × ℤ → M2, 2(ℝ) where

 (a, b) =
[

a 0
0 b

]

3. Prove that the zero map is a group homomorphism.
4. Let ℨ = (ℤ,+) and ℨn = (ℤn,+) with n ∈ ℤ+. Prove that ' : ℤ → ℤn defined by
'(x) = [x]n is a ring homomorphism ℨ→ ℨn.
5. Let ℭ = (ℂ, 0 + 0i,+, ⋅). Define  : ℂ → ℂ by  (a + bi) = a − bi for all a, b ∈ ℝ.
Prove the following.

(a)  is a ring homomorphism ℭ→ ℭ.
(b)  is one-to-one and onto.
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6. Prove the first part of Theorem 7.3.8.
7. Let ℜ = (R, 0,+, ⋅) be a ring and ℑ be an ideal of ℜ with domain I . Let the
function ' : R→ R∕I be defined as '(a) = a + I for all a ∈ R.

(a) Prove that ' is a homomorphism.
(b) Show that ker(') = I .
(c) Prove that ' is onto.

8. Prove Theorem 7.3.15.
9. Prove that the function ' of Example 7.3.16 is a bijection.
10. LetA andB be S-structures. WriteA - B if there exists a one-to-one homomor-
phism ' : A→ B. Prove the following.

(a) A - A
(b) If A - B and B - ℭ, then A - ℭ.
(c) It is possible for A - B and B - ℭ yet A and B are different S-structures.

11. Let A and A′ be {R}-structures with equal domains that are finite, where R is a
binary relation symbol. Assume that

A ⊨ X has a least element with respect to R

and
A′ ⊨ X has a least element with respect to R

for every X ⊆ dom(A). Prove that A ≅ A′.
12. Assume that S is finite and that the domain of the S-structure A is finite. Find a
S-sentence p such that B ⊨ p if and only if B ≅ A, for all S-structures B .
13. Suppose that ' : ℜ→ ℜ′ is a ring isomorphism as in Example 7.3.18. Prove.

(a) Ifℜ is an integral domain,ℜ′ is an integral domain.
(b) Ifℜ is a division ring,ℜ′ is a division ring.

14. Let ' : ℜ → ℜ′ be a ring isomorphism. Prove that 1 is unity fromℜ if and only
if '(1) is unity fromℜ′.
15. Prove or show false the given elementary equivalences.

(a) (ℝ, 0,+) ≡ (ℂ, 0,+).
(b) (ℤ, 0,+) ≡ (ℚ, 0,+).
(c) (ℤ,≤) ≡ (ℚ,≤).
(d) (!,≤) ≡ (ℤ+,≤).
(e) (!,≤) ≡ (ℤ−,≤).

16. Let A and B be sets and assume that S = ∅. Prove that (A) ≡ (B).
17. Generalize the argument of Example 7.3.26 to prove that A ≡ B implies that
A ≅ B if the cardinality of the domain of A equals 2.
18. Generalize the argument of Example 7.3.26 to prove that A ≡ B implies that
A ≅ B if the domain of A is finite.
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19. Let A, B, and ℭ be S-structures. Prove the following.
(a) A ≡ A.
(b) If A ≡ B, then B ≡ A.
(c) If A ≡ B and B ≡ ℭ, then A ≡ ℭ.

20. Let A and B be elementary equivalent S-structures. Prove that there exists an
S-structure ℭ such that A ⪯ ℭ and B ⪯ ℭ.
21. Prove Theorem 7.3.27.
22. Find the order isomorphisms f1 and f2 in Example 7.3.32.
23. Prove that the function f from Example 7.3.32 is a {≤}-isomorphism.
24. Assume that for all S-structuresA,B, and ℭ, ifA ⪯ B andB ⪯ ℭ, thenA ⊨ p if
and only if ℭ ⊨ p for all quantifier-free p.
25. Prove the first and third parts of Theorem 7.3.33.
26. Let ℱ = {A :  ∈ �} be a chain of S-structures for some cardinal � (Exer-
cise 7.2.3). Assume that A� ⪯ A� when � ∈ � ∈ �, making ℱ an elementary chain.
Prove that A� ⪯ ⋃

∈� A for all � ∈ �.
27. Find a set of subject symbols S and a chain of S-structures {An : n ∈ !} such that
Ai ≡ Aj for all i, j ∈ ! but A0 ≢ ⋃

n∈!An.

7.4 THE THREE PROPERTIES REVISITED

This section is an extension of Section 1.5 to first-order logic. First, we define what it
means to be consistent with the ultimate goal to show that any consistent system has a
model. Next, we show that first-order logic is sound in that every sentence that can be
proved is true, provided we have the correct understanding of what it means to prove
and what it means to be true. Lastly, we show that first-order logic is complete in that
every true sentence can be proved.

Consistency

Consider the following propositions representing Euclid’s axioms for his geometry (Eu-
clid 1925, I Postulates).

∙ Eu1. A line can be drawn through two distinct points.
∙ Eu2. A line segment can be drawn between two distinct points.
∙ Eu3. A circle can be drawn given any center and radius.
∙ Eu4. All right angles are congruent to each another.
∙ Eu5. If a line falling on two straight lines make the interior angles on the same
side less than two right angles, the two lines intersect on the side on which the
angles are less than two right angles.
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There are three sets of proposition here. First, is the list itself,
ℰ = {Eu1,Eu2,Eu3,Eu4,Eu5}.

Second, is the set of consequences (Definition 7.1.20) of ℰ ,
ℰ1 = {p : ℰ ⊨ p}.

Third, is the set of propositions provable (Definition 1.2.13) from ℰ ,
ℰ2 = {p : ℰ ⊢ p}.

For Euclidean geometry, ℰ1 = ℰ2. This means that both ℰ1 and ℰ2 can be said to
describe all of the propositions that are in the geometry. It is the job of the geometer to
discover what those propositions are.

We want to similarly analyze first-order logic. Given the rules of logic and a set
of theory symbols, we want the set of consequences to be equal to the set of provable
sentences. One way to have this happen is for a contradiction to follow from the axioms
(1.2.8). Then, by Theorem 1.5.2, every propositional form will have a proof and, in
turn, will also be a consequence, but we do not want such a system. Therefore, for all of
this to work effectively, it is a requirement that first-order logic is without contradiction.
To deal with this concept, we start with a definition.

DEFINITION 7.4.1

An S-theory is a set of S-sentences.
The set of all sentences provable in first-order logic given a set of theory symbols S is
an example of an S-theory. The theories that we study should have a familiar property
(compare Definition 1.5.1).

DEFINITION 7.4.2

An S-theory T is consistent [denoted by Con(F )] if T ⊬ q ∧ ¬q for every
S-sentence q. Otherwise, T is inconsistent.

We next generalize Theorem 1.5.2 to first-order logic. Its proof is left to Exercise 2.
THEOREM 7.4.3

Let T be an S-theory. The following are equivalent.
∙ T is consistent.
∙ Every finite subset of T is consistent.
∙ There is an S-sentence that is not provable from T .

As a consequence of Theorem 7.4.3, a theory T is inconsistent if either it has a finite
subset that is inconsistent or it is able to prove all sentences. This identifies the major
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weakness of an inconsistent theory. Not only can a contradiction be proved, but any
sentence can also be proved. Such a system is certainly worthless.

If a theory is consistent, it can be shown to be a subset of a theory that is the greatest
possible consistent theory. We generalize Definition 1.5.3 to name this theory.

DEFINITION 7.4.4

The S-theory T is maximally consistent if T is consistent and Con(T ∪ {p})
implies p ∈ T for all S-sentences p.

The next lemma gives some basic properties of maximally consistent theories.
LEMMA 7.4.5

Let T be a maximally consistent S-theory. Let p and q be S-sentences.
∙ If T ⊢ p, then p ∈ T .
∙ If ⊢ p, then p ∈ T .
∙ p ∈ T or ¬p ∈ T , but not both.
∙ If p→ q, p ∈ T , then q ∈ T .

PROOF
∙ Let T ⊢ p. Suppose that T ∪ {p} ⊢ q ∧ ¬q for some S-sentence q. This
means that there exists S-sentences p0, p1,… , pn−1 such that

p, p0, p1,… , pn−1, q ∧ ¬q

is a proof of q∧¬q from T ∪{p}. Since T proves p, there are S-sentences
q0, q1,… , qm−1 such that

q0, q1,… , qm−1, p

is a proof of p from T . Therefore,
q0, q1,… , qm−1, p, p0,… , pn−1, q ∧ ¬q

is a proof of q ∧ ¬q from T , a contradiction. This implies that T ∪ {p} is
consistent, so since T is maximally consistent, p ∈ T .

∙ If ⊢ p, then T ⊢ p, so p ∈ T by the first property.
∙ Since T is consistent, Con(T ∪ {p}) or Con(T ∪ {¬p}). Because T is
maximally consistent, p ∈ T or ¬p ∈ T , but not both because Con(T ).

∙ Let p → q and p be members of T . By MP, we have that T ⊢ q, so again
by the first part, q ∈ T .

Given a consistent theory, the construction of the maximally consistent theory that
contains it requires the use of a chain.
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LEMMA 7.4.6

If (C , ⊆) is a chain of consistent S-theories,⋃C is consistent.
PROOF

Let C be a chain of consistent sets of S-sentences with respect to ⊆. Suppose
⋃

C ⊢ q ∧ ¬q for some sentence q. Hence, there exists p0, p1,… , pn−1 ∈
⋃

C
such that

p0, p1,… , pn−1 ⊢ q ∧ ¬q.

This implies that for each i = 0, 1,… , n − 1, there exists Ci ∈ C such that
pi ∈ Ci. Since {Ci : i = 0, 1,… , n−1} is a finite chain, arrange them so that Cnis the greatest element with respect to ⊆. This gives

{p0, p1,… , pn−1} ⊆ Cn,

which implies that Cn ⊢ q ∧ ¬q, contradicting the consistency of Cn.
The next result proves the existence of a greatest consistent theory by generalizing
Theorem 1.5.4 to an arbitrary set of sentences.

THEOREM 7.4.7 [Lindenbaum]

Every consistent S-theory is a subset of a maximally consistent S-theory.
PROOF

Let T be a consistent set of S-sentences. Define
A = {E : T ⊆ E and E is a consistent set of S-formulas}.

Note thatA ≠ ∅ sinceT ∈ A . LetC be a chain inA . Then,⋃C ∈ A because
∙ T ⊆

⋃

C .
∙
⋃

C is consistent because each element of the chain C is consistent by
Lemma 7.4.6.

We conclude by Zorn’s lemma (5.1.13) that there is a greatest elementM ∈ A
with respect to ⊆. By definition, T ⊆ M and Con(M). Also, let p be a formula
such that Con(M ∪ {p}). Then, M ∪ {p} ∈ A , but since M is maximal, we
conclude that M ∪ {p} = M . Thus, p ∈ M , showing that M is maximally
consistent.

Soundness

We previously defined a logic to be sound if every theorem is a tautology and complete
if every tautology is a theorem (Definition 1.5.5). We now give the corresponding
definition for first-order logic (Figure 7.3).
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The sentence
is a theorem.

Sound

Complete

The sentence
is valid.

Figure 7.3 Sound and complete logics.

DEFINITION 7.4.8

∙ A logic is sound if every theorem is valid.
∙ A logic is complete if every valid sentence is a theorem.

A propositional form p is a tautology if v(p) = T for every valuation v (Definition 1.1.14).
This means that any interpretation of p will always yield a true proposition. This, in
turn, implies that p will hold in every model. That is,

tautologies are valid.
Therefore, it is evident that Definition 7.4.8 is a generalization of Definition 1.5.5 to
first-order logic.

As in Section 1.5, we begin with soundness.
THEOREM 7.4.9 [Soundness]

Let T be a set of S-sentences. For any S-sentence p, if T ⊢ p, then T ⊨ p.
PROOF

Using strong induction, we prove that for all k ∈ ℤ+,
if there exists a proof of p from T

consisting of k sentences, then T ⊨ p. (7.20)

In the case that n = 1, we see that ⊢ p. This implies that p is an axiom or p ∈ T
(Definition 1.2.13), so we have that T ⊨ p.

Now suppose that n > 1 and assume that (7.20) holds for all k ≤ n. This
means that there exists sentences p0, p1,… , pn−1 provable from T such that

p0, p1,… , pn−1, p

is a proof of p. Let A be any model of T . We have three cases to consider
(Theorem 1.4.2).

∙ p ∈ T , which implies that A ⊨ p.
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∙ p is derived using MP. This implies there exists S-sentences r and p such
that r, r → p ∈ {p0, p1,… , pn−1, p}. Since a sentence of a proof is provedfrom previous sentences of the proof, by induction,A ⊨ r→ p andA ⊨ r.
Therefore, A ⊨ p.

∙ p is logically equivalent to pi for some i = 0, 1,… , n − 1. This means that
p↔ pi is a tautology, soA ⊨ p↔ pi. By Theorem 7.1.7, we conclude that
A ⊨ p if and only if A ⊨ pi, but by induction, A ⊨ pi, so A ⊨ p.

If T = ∅, we can apply Theorem 7.4.9 to conclude the corollary.
COROLLARY 7.4.10

First-order logic is sound.
As with Corollary 1.5.11 for propositional logic, we can also prove the next result.

COROLLARY 7.4.11

First-order logic is consistent.

Completeness

It is now time to prove the completeness of first-order predicate logic. This result is
due to Kurt Gödel (1929) but the proof given here is due to Leon Henkin (1949). As
opposed to the soundness theorem (7.4.9), the proof is rather involved. We begin with
a definition (compare with EI, Theorem 2.3.14).

DEFINITION 7.4.12

Let T be a set of S-sentences and C a set of constant symbols of S. Define C to
be a witness set for T if for all S-formulas p = p(x), there exists c ∈ C such that

T ⊢ ∃xp→ p c
x
.

For example, let T = {x + 1 = 0, x + (1 + 1) = 0, (x + y) + 1 = 1} be a set of
NT-sentences. Extend NT to S = NT ∪ C , where C = {−1,−2}. Then, C is a witness
set for T if

T ⊢ ∃x(x + 1 = 0)→ (x + 1 = 0)−1
x

and
T ⊢ ∃x(x + (1 + 1) = 0)→ (x + (1 + 1) = 0)−2

x
.

Since (x + y) + 1 = 1 has two free variables, the witness set does not apply to it.
Recall that for a set of theory symbols S, the notation L(S) refers to the set of all

S-formulas (Definition 2.1.13).
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LEMMA 7.4.13

Let T be a consistent set of S-sentences. Let C be a set of constant symbols
not in S such that |C| = |L(S)|. Then, T can be extended to a consistent set of
(S ∪ C)-sentences that has C as a witness set.

PROOF
Let � = |L(S)| and suppose that C = {c� : � ∈ �} is a set of new constant
symbols. Assume that c� ≠ c� for all � ∈ � ∈ �. Since |L(S ∪ C)| = �, we
identify the formulas of L(S ∪ C) with at most one free variable as

p� = p�(x�)

with � ∈ �. Now define a chain C = {T :  ∈ �} and a set {d :  ∈ �} by
transfinite recursion (Corollary 6.1.24) such that for all � ∈ �,

∙ T� is consistent,
∙ T� is a (S ∪ C)-theory,
∙ |T�+1 ⧵ T� | = 1,
∙ d� is not among the symbols of the sentences in T� .

Let T0 = T and suppose that T� and d� has been defined for all � ∈ � with the
indicated properties.

∙ Let � = � + 1. Choose d� from C such that d� is not among the symbols
of the formulas in T� ∪ {p�}. This can be done since there are less than �
theory symbols in T� ∪ {p�}. Now define

T�+1 = T� ∪
{

∃x�p� → p�
d�
x�

}

. (7.21)

In order to obtain a contradiction, suppose that T�+1 is inconsistent. Since
T� is consistent, it must be the case that

T� ⊢ ¬
(

∃x�p� → p�
d�
x�

)

.

This implies that
T� ⊢ ∃x�p� ∧ ¬p�

d�
x�
.

By Com and Simp,
T� ⊢ ¬p�

d�
x�
.

Since d� is not among the symbols of p� or T� , it is arbitrary, so by UG,
T� ⊢ ∀x�¬p� .
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That is,
T� ⊢ ¬∃x�p� .

Using Simp and Conj, we conclude that
T� ⊢ ∃x�p� ∧ ¬∃x�p� ,

contradicting the consistency of T� .
∙ If � is a limit ordinal, define

T� =
⋃

�∈�
T� ,

which is consistent by Lemma 7.4.6.
We claim that the (S ∪ C)-theory

⋃

�∈�
T�

is the desired extension ofT . To see this, first note that this union is consistent by
Lemma 7.4.6. Also, let p(x) be an S ∪C-formula with at most one free variable.
This implies that p = p� and x = x� for some � ∈ �. Therefore,

∃x�p� → p�
d�
x�

∈ T�+1,

so
⋃

∈�
T ⊢ ∃x�p� → p�

d�
x�
.

Let S be a set of theory symbols and C be a set of constants from S. Let T be a
consistent S-theory. Wewant to define an S-structure that has a chance of being amodel
of T . One of the issues that must be overcome is whether any pair of constants should
be interpreted as being equal. If so, we want to view those constants as equivalent. To
do this, define a relation ∼ on C by

c0 ∼ c1 if and only if c0 = c1 ∈ T (7.22)
for all c0, c1 ∈ C . This defines an equivalence relation under the right conditions.

LEMMA 7.4.14

Let C be a set of constants from S. If T is a maximally consistent S-theory, then
∼ is an equivalence relation on C .
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PROOF
Let c0, c1, c2 ∈ C .

∙ Since T ∪ {c0 = c0} is consistent by E1 (Axioms 5.1.1), by the maximal
consistency of T , we have that c0 = c0 ∈ T .

∙ Suppose c0 = c1 ∈ T . Then, T ⊢ c0 = c1, so T ⊢ c1 = c0 by E2. Thus,
c1 = c0 ∈ T .

∙ Let c0 = c1 ∈ T and c1 = c2 ∈ T . Hence, we have T ⊢ c0 = c1 and
T ⊢ c1 = c2. Then, T ⊢ c0 = c2 by E3, which yields c0 = c2 ∈ T .

We define the domain of the desired structure to be C∕∼, the set of equivalence classes
modulo ∼ (Definition 4.2.10). Before we define the function a, we need some actual
functions and relations on C∕∼. Use the following lemma to define them.

LEMMA 7.4.15

Let T be a maximally consistent S-theory and C be a set of constant symbols
from S. Let t0, t1,… , tn−1, t′0, t

′
1,… , t′n−1 be S-terms such that

t0 ∼ t′0, t1 ∼ t′1,… , tn−1 ∼ t′n−1.

∙ For every n-ary function symbol f ,
f (t0, t1,… , tn−1) ∼ f (t′0, t

′
1,… , t′n−1).

∙ For every n-ary relation symbol R,
R(t0, t1,… , tn−1) ∈ T ⇔ R(t′0, t

′
1,… , t′n−1) ∈ T .

PROOF
By (7.22) we have that

T ⊢ t0 = t′0,T ⊢ t1 = t′1,… ,T ⊢ tn−1 = t′n−1.

Let f be an n-ary function symbol. Then,
T ⊢ f (t0, t1,… , tn−1) = f (t′0, t

′
1,… , t′n−1)

by E4 (Axioms 5.1.1), so
f (t0, t1,… , tn−1) = f (t′0, t

′
1,… , t′n−1) ∈ T

by Lemma 7.4.5, which implies thatf (t0, t1,… , tn−1) ∼ f (t′0, t
′
1,… , t′n−1). Next,let R be an n-ary relation symbol such that R(t0, t1,… , tn−1) ∈ T . This im-

plies that T ⊢ R(t0, t1,… , tn−1), so we have that T ⊢ R(t′0, t
′
1,… , t′n−1) by E5.

Again, by Lemma 7.4.5, R(t′0, t′1,… , t′n−1) ∈ T .
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Wenow define the functions and relations on the domainC∕∼withT beingmaximally
consistent.

∙ Let f be an n-ary function symbol from S. Let c0, c1,… , cn−1 ∈ C . Define the
n-ary function f∼ : C∕∼→ C∕∼ by

f∼([c0], [c1],… , [cn−1]) = [c]⇔ f (c0, c1,… , cn−1) = c ∈ T . (7.23)
Since f∼ is defined on a set of equivalence classes, we must confirm that f∼ is
well-defined. Let d0, d1,… , dn−1 ∈ C such that

c0 ∼ d0, c1 ∼ d1,… , cn−1 ∼ dn−1.

Then, [c] = [d] because by Lemma 7.4.15,
f (c0, c1,… , cn−1) ∼ f (d0, d1,… , dn−1).

∙ Let R be an n-ary relation symbol from S and take c0, c1,… , cn−1 ∈ C . Define
the n-ary relation R∼ on C∕∼ by

([c0], [c1],… , [cn−1]) ∈ R∼ ⇔ R(c0, c1,… , cn−1) ∈ T . (7.24)
We must check that the relation holds if different constant symbols are used to
represent the classes [c0], [c1],… , [cn−1]. To do this, let d0, d1,… , dn−1 ∈ C
such that c0 ∼ d0, c1 ∼ d1,… , cn−1 ∼ dn−1. Then, we have that

([d0], [d1],… , [dn−1]) ∈ R∼

since by Lemma 7.4.15,
R(d0, d1,… , dn−1) ∈ T .

The previous work makes the interpretation of the function and relation symbols of
S obvious. However, what about the constant symbols? To find out, take a constant
symbol c of S. If c ∈ C , then c should be interpreted as [c], so suppose that c ∉ C .
Because ⊢ ∃x(x = c) and T is maximally consistent,

∃x(x = c) ∈ T .

At this point make the further assumption that C is a witness set of T . Then, there
exists d ∈ C such that

c = d ∈ T .

This implies that [c] = [d]. Therefore, for every c ∈ S, there exists c∼ ∈ C such that
[c] = [c∼]. We can now define the structure.
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DEFINITION 7.4.16

Let T be a maximally consistent set of S-sentences with witness set C . Let ∼
be the relation (7.22). Define A∼ to be the S-structure with domain C∕∼ and
function a such that

∙ a(c) = [c∼] for all constant symbols c ∈ S,
∙ a(R) = R∼ for all n-ary relation symbols R ∈ S,
∙ a(f ) = f∼ for all n-ary function symbols f ∈ S.

Since we are investigating consistent sets of sentences, we do not need to involve a
particular interpretation for the structures in the proofs of the following results (Theo-
rem 7.1.31). Using Definition 7.4.16 will suffice.

LEMMA 7.4.17

Suppose that T is a maximally consistent set of S-sentences with C as a witness
set. Then,A∼ ⊨ t = c if and only if t = c ∈ T , for every constant symbol c ∈ S
and S-term t.

PROOF
Assume that c ∈ S is a constant symbol and let t be an S-term. Since T is a set
of sentences, t cannot have any free variables.

∙ Let t = d for some constant symbol d from S. Then,
A∼ ⊨ d = c ⇔ [d] = [c]⇔ d ∼ c ⇔ d = c ∈ T .

∙ Let t = f (t0, t1,… , tn−1) for some n-ary function symbol f and S-terms
t0, t1,… , tn−1 containing no free variables. Assume that

A∼ ⊨ f (t0, t1,… , tn−1) = c.

Since T is maximally consistent,
∃x(ti = x) ∈ T

for i = 0, 1,… , n − 1. Since C is a witness set, there exists ci ∈ C such
that

ti = ci ∈ T ,

which is equivalent to
ti ∼ ci. (7.25)

Therefore, by induction,
A∼ ⊨ ti = ci.

Hence,
A∼ ⊨ f (c0, c1,… , cn−1) = c.
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This implies that
f∼([c0], [c1],… , [cn−1]) = [c],

so by (7.23),
f (c0, c1,… , cn−1) = c ∈ T .

Therefore, by Lemma 7.4.15 and (7.25),
f (t0, t1,… , tn−1) = c ∈ T .

The converse is left to Exercise 4.

LEMMA 7.4.18

If T is a consistent set of S-sentences with C as a witness set, then p ∈ T if and
only if A∼ ⊨ p [I] for every S-sentence p.

PROOF
We can assume that T is maximally consistent (Exercise 5). Let C be a witness
set of T . We prove the theorem by induction on formulas.

∙ Let t0 = t1 ∈ T for S-terms t0 and t1 with no free variables. Since T is
maximally consistent,

∃x(t0 = x) ∈ T

and
∃x(t1 = x) ∈ T .

Because C is a witness set for T , there exists c, d ∈ C such that
t0 = c ∈ T

and
t1 = d ∈ T .

This implies that t0 ∼ c and t1 ∼ d, so because t0 ∼ t1,
[c] = [d].

Therefore, A∼ ⊨ c = d, but because A∼ ⊨ t0 = c and A∼ ⊨ t1 = d
(Lemma 7.4.17),A∼ ⊨ t0 = t1. The proof of the converse is Exercise 7(a).

∙ Let R(t0, t1,… , tn−1) ∈ T for some relation symbol R in S and S-terms
t0, t1,… , tn−1 with no free variables. As in the first part of this proof, thereexist constants ci ∈ C (i = 0, 1,… , n − 1) such that ti ∼ ci. Thus, by
Lemma 7.4.15, R(c0, c1,… , cn−1) ∈ T , and then by the definition of R∼,
we have that

([c0], [c1],… , [cn−1]) ∈ R∼.

Therefore,
A∼ ⊨ R(c0, c1,… , cn−1),
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so A∼ ⊨ R(t0, t1… , tn−1) [I] as in first part. The proof of the converse isExercise 7(b).
∙ Let p be an S-sentence. Then, by induction and the maximal consistency
of T ,

¬p ∈ T ⇔ p ∉ T ⇔ A∼ ̸⊨ p⇔ A∼ ⊨ ¬p [I].

∙ Let p and q be S-sentences. Assume p → q ∈ T and A∼ ⊨ p [I]. By
induction, p ∈ T , so by Lemma 7.4.5 andMP, q ∈ T . Again by induction,
A∼ ⊨ q [I], so A∼ ⊨ p → q [I]. See Exercise 7(c) for the proof of the
converse.

∙ Let p be an S-formula with at most one free variable x. By induction and
the maximal consistency of T ,

A∼ ⊨ ∃xp⇔ p c
x
∈ T for some c ∈ C ⇔ ∃xp ∈ T .

The hard work of this section leads to the fundamental theorem of model theory.
THEOREM 7.4.19 [Henkin]

An S-theory T is consistent if and only if T has a model.
PROOF

Let T be a set of S-sentences. Suppose T is consistent and let C be a set of
constant symbols not found in S such that |C| = |L(S)|. By Lemma 7.4.13, there
exists a consistent extension T of T such that the elements of T are (S ∪ C)-
sentences and C is a witness set for T . By Lemma 7.4.18, there exists a model
A of T . Since the sentences of T do not contain any of the constants of C , the
reduct of A to S is a model of T . To see this, let B be the indicated reduct and
proceed by induction on formulas.

∙ Let t0 and t1 be S-terms such that (t0 = t1) ∈ T . These terms are also
(S ∪ C)-terms, so since T ⊆ T , we have that A ⊨ t1 = t2. Thus, there isan (S∪C)-interpretation I such thatA ⊨ t1 = t2 [I]. Hence, I(t1) = I(t2).Let I ′ be the restriction of I to S. Since t1 and t2 contain no symbols from
C , I ′(t1) = I ′(t2), so B ⊨ t1 = t2 [I ′] because B is the reduct of A to S.
By Theorem 7.1.31, we have that B ⊨ t1 = t2.

∙ That R(t0, t1,… , tn−1) ∈ T implies B ⊨ R(t0, t1,… , tn−1) for any n-aryrelation symbol R ∈ S and S-terms t0, t1,… , tn−1 is Exercise 8(a).
∙ Let ¬p ∈ T . This implies that A ⊨ ¬p. That is, not A ⊨ p. SinceB is the
reduct of A to S, not B ⊨ p. In other words, B ⊨ ¬p.

∙ That (p → q) ∈ T implies B ⊨ p → q for S-sentences p and q is Exer-
cise 8(b).
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∙ Suppose that ∃xp ∈ T , where p = p(x) is an S-formula. Since C is a
witness set and T is maximally consistent, p c

x
∈ T for some c ∈ C . By

induction,
A ⊨ p c

x
.

Let I be an interpretation of A. Then, A ⊨ p [Ia(c)x ], so we conclude that
A ⊨ ∃xp.

To prove the converse, suppose that T ⊢ q ∧ ¬q for some S-sentence q. By
the soundness theorem (7.4.9), T ⊨ q ∧ ¬q. Hence, if A is an S-structure such
that A ⊨ T , then A ⊨ q ∧ ¬q, which implies that A ⊨ q and not A ⊨ q. Hence,
T does not have a model.

Henkin’s theorem (7.4.19) is used to prove the converse to the soundness theorem
(7.4.9).

COROLLARY 7.4.20 [Completeness]

Let T be a consistent set of S-sentences. For any S-sentence p, if T ⊨ p, then
T ⊢ p.

PROOF
Suppose that T ⊬ p. This implies that T ∪ {¬p} is consistent, so by Henkin’s
theorem (7.4.19), there exists an S-structure A such that A ⊨ T ∪ {¬p}. Hence,
T ̸⊨ p.
COROLLARY 7.4.21

First-order logic is complete.
The next corollary was first proved by Kurt Gödel (1929). It was his doctoral disserta-
tion.

COROLLARY 7.4.22 [Gödel’s Completeness Theorem]

An S-sentence is a theorem if and only if it is valid.

COROLLARY 7.4.23

For all sets of S-sentences T and S-sentences p, T ⊢ p if and only if T ⊨ p.
The use of models to show consistency is now a common technique in mathematical

logic. An early example was Hilbert’s use of ℝ × ℝ to show that Euclidean geometry
is consistent (Hilbert 1899). That is, ℝ × ℝ serves as the domain of a structure that
models the postulates of Euclidean geometry. The proof relies on the consistency of
the properties of ℝ×ℝ, a fact that is left unproved. A later usage is the model used by
Gödel that shows that both CH and the axiom of choice (5.1.10) are consistent with ZF
(Gödel 1940). Both are examples of relative consistency proofs. Gödel assumed the
consistency of ZF, so he had a model for it. From this he defined another model that
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satisfies CH and, in addition, the axiom of choice. We represent this by writing
Con(ZF)→ Con(ZFC + CH).

This is a partial answer to one of the ten then unsolved problems that Hilbert pre-
sented at the International Congress of Mathematicians at Paris in 1900. An expanded
list was published that year in Germany with an English translation released two years
later (Hilbert 1902). Hilbert’s intention was to outline the important problems that
mathematicians should strive to prove in the twentieth century. The first problem in-
volved the continuum hypothesis. Namely, it should be determined whether

as regards equivalence there are . . . only two assemblages of numbers, the
countable assemblage and the continuum.

Hilbert’s second problem dealt with the axioms of arithmetic. Specifically, he thought
that any of the chosen axioms should not be provable from the others. That is, they
should be independent. More importantly, mathematicians should seek

[t]o prove that they [the axioms] are not contradictory, that is, that a finite
number of logical steps based upon them can never lead to contradictory
results.

In this problem we see the notions of finite proof (Definition 1.2.13) and consistency
(Definitions 1.5.1 and 7.4.2), which would influence to the development of model the-
ory some 20–30 years after Hilbert’s talk and lead to some interesting results.
Exercises

1. Is ∅ consistent? Explain.
2. Prove Theorem 7.4.3.
3. Prove that the group axioms (7.1.14) and the ring axioms (Axioms 7.1.36) are con-
sistent.
4. From the proof of Lemma 7.4.17, prove that if f (t0, t1,… , tn−1) = c ∈ T , then
A∼ ⊨ f (t0, t1,… , tn−1) = c for all constant symbols c, n-ary function symbols f , and
S-terms t0, t1,… , tn−1.
5. In Lemma 7.4.18, why can T be assumed to be maximally consistent?
6. LetA be an S-structure. Define Th(A) to be the set of S-sentences that are satisfied
by A. Prove that Th(A) is maximally consistent.
7. Prove the given results from the proof of Lemma 7.4.18.

(a) If A∼ ⊨ t0 = t1, then t0 = t1 ∈ T for all S-terms t0 and t1 with no free
variables.

(b) For all S-terms t0, t1… , tn−1 with no free variables, R(t0, t1… , tn−1) ∈ Tif A∼ ⊨ R(t0, t1… , tn−1).
(c) A∼ ⊨ p→ q implies that p→ q ∈ T for all S-sentences p and q.

8. Show the following from the proof of Henkin’s theorem (7.4.19).
(a) If R(t1,… , tn) ∈ T , then B ⊨ R(t1,… , tn) for any relation symbol R ∈ S

and S-terms t1,… , tn.
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(b) If p→ q ∈ T , then B ⊨ p→ q for all S-sentences p and q.
9. Prove Corollary 7.4.22.
10. LetT andU be consistent sets of S-sentences. Prove that ifT ∪U is inconsistent,
then there exists an S-sentence p such that T ⊨ p but U ̸⊨ p.
11. We say that an S-theory T is closed under deductions if for all S-sentences p, if
T ⊢ p, then p ∈ T .

(a) If a theory is closed under deductions, is the theory maximally consistent?
(b) Let � be an ordinal and suppose that {T� : � ∈ �} is a family of S-theories

such that for all , � ∈ �, if  ∈ �, then T ⊆ T� . Prove that if T� is
consistent for all � ∈ �, then⋃�∈� T� is consistent.

12. A theory T is finitely axiomatizable if there exists an S-sentence p such that for
all S-sentences q, T ⊨ q if and only if p ⊨ q. Let {Tn : n ∈ !} be a chain of finitely
axiomatizable S-theories such that m ≤ n implies that Tm ⊆ Tn. Suppose that for all
n ∈ !, there exists a model of Tn that is not a model of Tn+1. Prove that ⋃n∈! Tn isnot finitely axiomatizable.
13. Suppose that T1 and T2 are S-theories. Let A and B be S-structures. Prove the
following.

(a) If T1 ⊆ T2, then every model of T2 is a model of T1.
(b) If A ⊆ B, then Th(B) ⊆ Th(A).
(c) If A ⊨ T1 ∪ T2, then A ⊨ T1 and A ⊨ T2.
(d) A ⊨ T1 if and only if T1 ⊆ Th(A).

7.5 MODELS OF DIFFERENT CARDINALITIES

The natural numbers and their basic operations of addition and subtraction can be de-
fined using the axioms of ZFC (Section 5.2). It can then be proved that ! has basically
the same algebraic properties as N. Another approach to studying the natural numbers
is to break down the subject to its most basic parts. Think about addition of natural
numbers and how it is first explained. Adding 4 to 3 to obtain 7, for example, means
starting at 3 and adding 1 four times in sequence:

3 + 1 = 4,
4 + 1 = 5,
5 + 1 = 6,
6 + 1 = 7.

Adding 1 simply means moving to the next natural number, so to add any two natural
numbers, all one needs is to know the numerals and have the ability to count (compare
Definition 5.2.15). Although not efficient, this will do. Multiplication, the other oper-
ation, is based on addition. Multiplying 4 by 3 means writing 4 down 3 times and then
adding:

4 + 4 + 4 = 12.
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This means that multiplication is also based on the ability to count (compare Defini-
tion 5.2.18). This ability is represented by the successor function,

Sn = n + 1,

which is the basis of arithmetic (compare Definition 5.2.1). Thus, to understand the
natural numbers and how they work, we simply need a successor function that satisfies
the right rules.

Peano Arithmetic

Using the theory symbols AR (Example 2.1.4), we make the following axioms. They
are a minor modification of the axioms for the system of arithmetic found in Arith-
metices principia by Giuseppe Peano (1889).

AXIOMS 7.5.1

∙ P1. ∀x(¬ Sx = 0)

∙ P2. ∀x∀y(Sx = Sy→ x = y)

∙ P3. For every AR-formula p with free variable x,
p(0) ∧ ∀x[p(x) → p(Sx)]→ ∀xp(x).

Denote {P1,P2,P3} by P. If we define
p(S) = +,
p(0) = ∅,

(7.26)

then Theorem 5.2.2, Theorem 5.2.6, and Corollary 5.2.12 imply that P = (!, p) is a
model of P. Because of the existence of a model for these axioms, which was con-
structed using ZFC, we conclude the following (Theorem 7.4.19).

THEOREM 7.5.2

The consistency of P is a consequence of ZFC.
Since the Peano axioms are intended to be the assumptions of number theory, AR is

often extended to AR′ (Example 2.1.4) and the sentences of Axioms 7.5.1 broadened to
include axioms involving +, ⋅, and <. These axioms serve as the foundation of number
theory.

AXIOMS 7.5.3 [Peano]

∙ PA1. ∀x(¬ Sx = 0)

∙ PA2. ∀x∀y(Sx = Sy→ x = y)

∙ PA3. ∀x(x + 0 = x)
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∙ PA4. ∀x∀y[x + Sy = S(x + y)]

∙ PA5. ∀x(x ⋅ 0 = 0)

∙ PA6. ∀x∀y(x ⋅ Sy = x ⋅ y + x)

∙ PA7. ∀x(¬ x < 0)

∙ PA8. ∀x∀y[x < Sy ↔ (x < y ∨ x = y)]

∙ PA9. ∀x∀y(x < y ∨ x = y ∨ y < x)

∙ PA10. For every AR′-formula p with free variable x,
p(0) ∧ ∀x[p(x) → p(Sx)]→ ∀xp(x).

Let PA denote the Peano axioms (7.5.3). We call the set of consequences of the Peano
axioms Peano arithmetic. To find a model for these axioms, extend the function p
(7.26) to p′ so that p′(+) is the addition of Definition 5.2.15, p′(⋅) is the multiplication
of Definition 5.2.19, and using the order of Definition 5.2.10,

p′(<) = {(m, n) ∈ ! × ! : m ∈ n}.
That p′(<) satisfies PA7–PA9 is left to Exercise 2. Then, as before, P′ = (!,p′) is a
model of the Peano axioms, which is an expansion of the model P, and we can again
apply Theorem 7.4.19 to obtain a consistency result.

THEOREM 7.5.4

The consistency of PA is a consequence of ZFC.
We call P′ and any AR′-structure isomorphic to it a standard model of Peano arith-
metic. The the elements of the domain of any standard model are called standard
numbers. Any model of Peano arithmetic that is not isomorphic to P′ is called a
nonstandard model of Peano arithmetic.

Observe that P and PA are sets of axioms separate from ZFC. However, because
of the work of Section 5.2, both P and PA can be viewed as consequences of ZFC.
Specifically, if P1 is replaced by

∀x(x+ ≠ ∅), (7.27)
P2 is replaced by

∀x∀y(x+ = y+ → x = y), (7.28)
and P3 is replaced by

p(∅) ∧ ∀x[p(x) → p(x+)]→ ∀xp(x) (7.29)
for every ST-formula p with free variable x, then

ZFC ⊨ {(7.27), (7.28), (7.27)}.
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That is, a copy of P is found among the consequences of ZFC. Also, using Defini-
tions 5.2.15 and 5.2.18, it can be shown that a copy of Peano arithmetic is found among
the consequences of ZFC.

We will not repeat all our number theory work in Peano arithmetic, although it is
possible to do so. Instead, we give a sample of some basic results to illustrate that
the two systems are the same. Because of the work in Section 5.2, the addition and
multiplication of Peano arithmetic are commutative, associative, satisfy the distributive
and cancellation laws, and have identities in the standard model. That these properties
hold in every model of Peano arithmetic is a separate issue, yet their proofs are similar
to the work of Section 5.2.

THEOREM 7.5.5

The following AR′-sentences are theorems of PA.
∙ Associative Laws
∀x∀y∀z[x + (y + z) = (x + y) + z]
∀x∀y∀z[x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z]

∙ Commutative Laws
∀x∀y(x + y = y + x)
∀x∀y(x ⋅ y = y ⋅ x)

∙ Additive Identity
∀x(0 + x = x)

∙ Multiplicative Identity
∀x(S0 ⋅ x = x)

∙ Distributive Law
∀x∀y∀z[x ⋅ (y + z) = x ⋅ y + x ⋅ z]

PROOF
We prove the first associative law and the multiplicative identity property, leaving
the others to Exercise 9.

∙ Define
p(x) := ∀z[x + (y + z) = (x + y) + z].

By PA3, we have p(0) because
x + (y + 0) = (x + y) + 0.

Next, assume p(k). Since S is a function symbol, PA4 yields
S [x + (y + k)] = S [(x + y) + k] ,
x + S(y + k) = (x + y) + Sk,
x + (y + Sk) = (x + y) + Sk.
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Therefore, p(Sk), so the associative law for multiplication holds by PA10.
∙ Assuming that the commutative laws have already been proved, PA6, PA5,
and PA3 imply that

S0 ⋅ x = x ⋅ S0 = x ⋅ 0 + x = 0 + x = x + 0 = x,

so S0 ⋅ x = x by E3 (Axioms 5.1.1).
To ease our notation when dealing with numbers other than 1 = S0, define

S0x = x (7.30)
and for all n ∈ ! ⧵ {0},

Sn = SS…S
⏟⏞⏟⏞⏟
n times

x. (7.31)

We will use this notation in the next example.
EXAMPLE 7.5.6

In the formula,
(3 + 2) + 1 = (1 + 3) + 2, (7.32)

two properties from Theorem 7.5.5 are being applied. First, we conclude that
(3 + 2) + 1 = 1 + (3 + 2) by the commutative law. The associative law is then
used to draw the final conclusion. Notice that (7.32) is the standard interpretation
of

++SSS0SS0S0 = +S0SSS0 + SS0,
which, using (7.31), is equivalent to

++S30S20S10 = +S10S30 + S20.

Also, the distributive law is applied in the formula
2 ⋅ x + 3 ⋅ x = 5 ⋅ x,

because
2 ⋅ x + 3 ⋅ x = x ⋅ 2 + x ⋅ 3 = x ⋅ (2 + 3) = x ⋅ 5 = 5 ⋅ x.

Given an equation like
5 ⋅ x + 1 = 11, (7.33)

the standard routine is to solve it like this:
5 ⋅ x + 1 = 11,

5 ⋅ x = 10,
x = 2.

In the first step, −1 was added to both sides, and in the second, 1∕5 was multiplied by
both sides. However, only 0 has an additive inverse in Peano arithmetic, and only 1 has
a multiplicative inverse. The way around this problem are cancellation laws.
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THEOREM 7.5.7 [Cancellation]

The following AR′-sentences are theorems of PA.
∙ ∀x∀y∀z[(x + z = y + z)→ x = y]

∙ ∀x∀y∀z[(x ⋅ z = y ⋅ z ∧ ¬z = 0)→ x = y].
PROOF

The proof of the cancellation law for multiplication is Exercise 10. For addition,
define

p(z) := ∀x∀y(x + z = y + z→ x = y).

First, notice that if x + 0 = y + 0,
x = x + 0 = y + 0 = y,

where the first and last equality hold by PA3. Therefore, p(0). For the induction
step, suppose p(k). Then, by PA4 and PA2,

x + Sk = y + Sk,
S(x + k) = S(y + k),

x + k = y + k,
x = y,

where the last step follows by p(k). Therefore, ∀zp(z) by PA10.
Therefore, in Peano arithmetic, solve (7.33) like this:

5 ⋅ x + 1 = 11,
5 ⋅ x + 1 = 10 + 1,

5 ⋅ x = 10,
5 ⋅ x = 5 ⋅ 2,
x = 2.

The third and last equations follow by cancellation (Theorem 7.5.7).

Compactness Theorem

Having a model that satisfies P or PA means that basic arithmetic can be done in this
model. We know that this happens in the standard model (assuming ZFC), so we now
want to know whether there are any nonstandard models of Peano arithmetic. To be
successful in our search, we turn to some theorems that follow from Henkin’s theorem
(7.4.19). The first states that the existence of a model rests on the finite. It was first
proved by Gödel for countable first-order theories (1930) and by Anatolij Mal’tsev for
arbitrary first-order theories (1936).
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THEOREM 7.5.8 [Compactness]

An S-theory T has a model if and only if every finite subset of T has a model.
PROOF

Since sufficiency is clear, let T have the property that every finite subset has
a model. This implies that every finite subset of T is consistent by Henkin’s
theorem. Therefore, T is consistent by Theorem 7.4.3, so T also has a model
by Henkin’s Theorem.
We apply the compactness theorem to find another model of PA. Let c be a constant

symbol other than 0. For every natural number n, use (7.30) and (7.31) to define the
set of (AR′ ∪ {c})-sentences

ℱn = PA ∪ {S i0 < c : i ∈ ! ∧ i ≤ n},

and let An = ({0, 1,… , n + 1}, a), where
a �AR′ = p′

and
a(c) = n + 1.

Observe that
An ⊨ ℱn,

soℱn is consistent for all n ∈ !, which implies that it has a model by Henkin’s Theorem
(7.4.19). Therefore,

ℱ =
⋃

n∈!
ℱn

has a model by the compactness theorem (7.5.8). Let A be the reduct of this model
to AR′. Notice that A ⊨ PA, but because it has an element that is interpreted to be
greater than every element of its domain,A is a nonstandard model of Peano arithmetic
(Theorem 7.3.24).

Löwenheim–Skolem Theorems

Now that we know that a nonstandard model of Peano arithmetic exists under ZFC,
we want to know if there are others. For this, we need a definition. The power of an
S-structure A is denoted by |A| and refers to the cardinality of the domain of A. This
means that a model is countable if and only if its power is countable. We introduce a
sequence of theorems related to this. They are due to Skolem (1922), Tarski and Vaught
(1957), and Leopold Löwenheim (1915).

THEOREM 7.5.9 [Downward Löwenheim–Skolem]

Every consistent S-theory has a model with power of at most |L(S)|.
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PROOF
Recall these facts from the proof of Henkin’s theorem (7.4.19).

∙ C is a set of new constant symbols such that |C| = |L(S)|.
∙ A is a (S ∪ C)-structure.
∙ B is the reduct of A to S.

We can assume that A has the property that every element of the domain of A is
the interpretation of a constant of C . Then, sinceA andB have the same power,

|B| ≤ |L(S ∪ C)| = |L(S)|.

Since the witness set of a single sentence is finite and there are only finitely many
symbols in a sentence, S ∪C can be assumed to be finite in the proof of the downward
Löwenheim–Skolem theorem (7.5.9). If this is the case, |L(S∪C)| = |L(S)| = ℵ0, andwe have the next corollary.

COROLLARY 7.5.10 [Löwenheim]

If an S-sentence has a model, it has a countable model.
Since L(AR′) is countable, Theorem 7.5.9 also implies the following.

COROLLARY 7.5.11 [Skolem]

ZFC implies that there is a countable nonstandard model of Peano arithmetic.
In fact, although we do not prove it here, ZFC implies that there are 2ℵ0 countable
nonstandard models of Peano arithmetic.

The title of Theorem 7.5.9 suggests the existence of the following theorem.
THEOREM 7.5.12 [Upward Löwenheim–Skolem]

If an S-theory has an infinite model, it has a model of cardinality � for every
� ≥ |L(S)|.

PROOF
Let T be an S-theory with an infinite model A = (A, a). Take � ≥ |L(S)|.
Choose a set C = {c� : � ∈ �} of distinct constant symbols not found in S.
Extend T to the (S ∪ C)-theory T by defining

T = T ∪ {c� ≠ cb : � ∈ � ∈ �}.
Let S be a finite subset of T . This implies that there exists

C ′ = {c�0 , c�1 ,… , c�n−1} ⊆ C

such that the constants of the sentences of S are among the constants of C ′.
Expand the S-structureA to the (S∪{c�0 , c�1 ,… , c�n−1})-structureA′ = (A, a′),
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where a′ � S = a and
a′(c�i ) ∈ A

for all i = 0, 1,… , n − 1. Since A is infinite, we further assume that
a′(c�0 ), a

′(c�1 ),… , a′(c�n−1 )

are distinct. Therefore, A′ ⊨ S , so by the compactness theorem (7.5.8), there
exists a model B of T , and due to the interpretation of the new constants, the
power ofB is �. Thus, the reduct ofB to S is a model of T and has power �.

The upward Löwenheim–Skolem theorem with ZFC implies that the Peano axioms
have models of all infinite cardinalities, which are nonstandard by definition.

The von Neumann Hierarchy

We constructed a model of PA using ZFC. If we can find models of ZFC, we would
have other models of PA, plus prove the consistency of ZFC. In order to find models
of ZFC, we begin by searching for models of individual axioms using a definition due
to von Neumann (1929). The objective of the definition is to construct a sequence
of sets that have the property that every set is in one of the stages of the sequence.
However, since vonNeumann’s definition used functions instead of sets, it was Zermelo
(1930) who gave it its more recognizable form. While von Neumann left his base stage
empty, Zermelo allowed the first set of the sequence to contain objects, which are called
urelements, that were not sets yet were allowed to be elements of sets (Exercise 20).
These two approaches are combined in the following definition, which is named after
von Neumann.

DEFINITION 7.5.13

Let V0 = ∅. Let � be an ordinal.
∙ V�+1 = P(V�).
∙ V� =

⋃

�<� V� if � is a limit ordinal.
This is called the von Neumann hierarchy.

As proved in Exercise 22, V� is a set for every ordinal � by the empty set, union, power
set, and replacement axioms (5.1.2, 5.1.6, 5.1.7, 5.1.9). Thus, every element of V� is aset. For example,

V1 = {∅},
V2 = {∅, {∅}},
V3 = {∅, {∅}, {{∅}}, {∅, {∅}}}
⋮

The sets in V! are finite and called the hereditarily finite sets. There are countably
many of these sets because Vn is countable for each n ∈ ! (Theorem 6.3.17), while
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|V!+1| = 2ℵ0 . Observe that the cardinality of Vn for each n ∈ ! is finite but grows very
quickly.

|V0| = 0,
|V1| = 1,
|V2| = 2,

|V3| = 22,

|V4| = 22
2
,

|V5| = 22
22
,

|V6| = 22
22
2

⋮

Before we can use individual stages of von Neumann’s hierarchy, we need to know
some of their key properties. For this, we start with some lemmas.

LEMMA 7.5.14

Let � and � be ordinals.
∙ V� is a transitive set.
∙ If � ⊆ �, then V� ⊆ V� .

PROOF
Let � be a limit ordinal containing � and �. Define

A = {� ∈ � : V� is transitive}.
Assume that seg(A, �) ⊆ A for the ordinal � ∈ � . Let B ∈ V� .

∙ V0 is transitive because V0 = ∅.
∙ Suppose that � = + for some ordinal  . By definition, B ∈ P(V ), so
B ⊆ V . Take x ∈ B. This implies that x ∈ V . Because V is transitive,we have that x ⊆ V . Hence, x ∈ P(V ) = V� , so B ⊆ V� .

∙ Let � be a limit ordinal. Then, there exists  ∈ � such that B ∈ V . Since
V is transitive by hypothesis, B ⊆ V ⊆ V� .

We conclude that � ∈ A. Thus, by transfinite induction (Theorem 6.1.18), A = �
and V� is transitive.Now, suppose � ⊆ � and take x ∈ V� . Since

V� ∈ P(V�) ⊆ V� ,

V� ∈ V� . However, the first part shows that V� is transitive, so V� ⊆ V� .
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LEMMA 7.5.15

If � is an ordinal, then � ∈ V�+ .
PROOF

Let � be an ordinal and take � to be a limit ordinal such that � ∈ � and proceed
by transfinite induction.

∙ Since V0 = ∅, we have that ∅ ∈ V1.
∙ Suppose that � ∈ V�+ . Since V�+ is transitive (Lemma 7.5.14), � ⊂ V�+ .Also, {�} ⊂ V�+ . Therefore, � ∪ {�} ⊂ V�+ , so �+ ∈ V�++ .
∙ Let � be a limit ordinal and assume that � ∈ V�+ for all � ∈ �. That is,
� ⊂ V�+ for all � ∈ � since each V�+ is transitive. Hence,

� =
⋃

�∈�
� ⊆

⋃

�∈�
V�+ = V� ,

which implies that � ∈ V�+ .
The definition of the von Neumann hierarchy along with the fact that every ordinal

belongs to a member of the hierarchy suggests that many, if not all, sets also belong to
the hierarchy. For this reason, we define the following.

DEFINITION 7.5.16

Let V denote the collection of all sets A such that A ∈ V� for some ordinal �.
It is the case that all sets belong to the hierarchy. This is the next theorem. Its proof is
aided by the use of two terms and a lemma.

∙ A set A is grounded if there exists an ordinal � such that A ⊆ V� .
∙ The transitive closure of A is

TC(A) = {u : ∀v(A ∈ v ∧ v is transitive → u ∈ v)}.

As the name implies, TC(A) is a transitive set (Exercise 24).
The proof of the next lemma is left to Exercise 21.

LEMMA 7.5.17

Every element of A is grounded if and only if A is grounded.

THEOREM 7.5.18

For every set A, there exists an ordinal � such that A ∈ V� .
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PROOF
Suppose that A is a set such that A ∉ V� for all ordinals �. If A ⊆ V� for some
ordinal �, then A ∈ V�+, which contradicts the hypothesis. Hence, A is not
grounded, which implies that {A} is not grounded (Lemma 7.5.17). Define

B = {u ∈ TC({A}) : u is not grounded}.
Since B ≠ ∅, the regularity axiom (5.1.15) implies that there exists C ∈ B such
that C ∩ B = ∅. Let x ∈ C . Since transitive closures are transitive, x ∈ TC(A).
However, x ∉ B, so x is grounded. From this we conclude that C is grounded
by Lemma 7.5.17, a contradiction.

Therefore, every set is in V, but we know by Corollary 5.1.17 that V is not a set in that
it cannot be built using ZFC. However, we sometimes want to refer to such collections
even though they are not sets. For this reason the term class was introduced, so we call
V the class of all sets.

We are now ready to use sets from the von Neumann hierarchy to serve as models
for axioms from ZFC (Section 5.1).

DEFINITION 7.5.19

Let � be an ordinal. Define the ST-structure V� = (V� ,∈).
Consider

V3 = ({∅, {∅}, {{∅}}, {∅, {∅}}},∈). (7.34)
The elements of V3 are the sets of the model. These elements are equal exactly when
they share the same elements (Definition 3.3.7), so

V3 ⊨ extensionality axiom.
Because the union of any two elements of V3 is an element of V3, such as

∅ ∪ {∅} = {∅}

and
{{∅}} ∪ {∅, {∅}} = {∅, {∅}},

we see that
V3 ⊨ union axiom.

If we take a ST-formula p(x) and A ∈ V3, then {x : x ∈ A ∧ p(x)} ∈ V3. Hence,
V3 ⊨ subset axioms.

Because V3 is finite,
V3 ⊨ axiom of choice,

and we have that
V3 ⊨ axiom of regularity

since, for example,
{∅} ∩ {{∅}} = ∅.

These results are particular examples of the next general theorem.
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THEOREM 7.5.20

If � is an ordinal,
∙ V� ⊨ extensionality axiom,
∙ V� ⊨ union axiom,
∙ V� ⊨ subset axioms,
∙ V� ⊨ axiom of choice,
∙ V� ⊨ axiom of regularity.

PROOF
Let � be an ordinal and I be an ST-interpretation of V� . We check that the
extensionality axiom (5.1.4) holds in the model and leave the other parts of the
proof to Exercise 25. Take A,B ∈ V� . Assume that

V� ⊨ ∀u(u ∈ x↔ u ∈ y) [(IAx )
B
y ].

That is,
for all m ∈ V� , V� ⊨ u ∈ x [((IAx )By )mu ] if and only if V� ⊨ u ∈ y [((IAx )By )mu ].

Wewant to show thatA = B, so let a ∈ A. Since V� is transitive (Lemma 7.5.14),
a ∈ V� , which implies that

V� ⊨ u ∈ x [((IAx )
B
y )
a
u].

Therefore,
V� ⊨ u ∈ y [((IAx )

B
y )
a
u],

which implies that a ∈ B. This proves that A ⊆ B. A similar proof shows that
B ⊆ A. Thus, A = B, from which follows that

V� ⊨ x = y [(IAx )
B
y ].

Therefore,
if V� ⊨ ∀u(u ∈ x↔ u ∈ y) [(IAx )

B
y ], then V� ⊨ x = y [(IAx )By ].

In other words,
V� ⊨ ∀u(u ∈ x↔ u ∈ y)→ x = y [(IAx )

B
y ].

Since A and B were arbitrarily chosen,
V� ⊨ ∀x∀y(∀u[u ∈ x↔ u ∈ y]→ x = y).

Again, using the ST-structure V3 (7.34), we see that the result of pairing two ar-
bitrarily chosen elements of V3 into a single set might not be an element of V3. For
example,

{{∅}, {{∅}}} ∉ V3.
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The same is true regarding power sets. For example,
P({{∅}}) = {∅, {{∅}}} ∉ V3.

However, both of these sets are elements of V!, which suggests that for the pairing
(5.1.5) and power set (5.1.7) axioms to hold in stage V� of the von Neumann hierarchy,
� needs to be a limit ordinal.

THEOREM 7.5.21

If � is a limit ordinal,
∙ V� ⊨ pairing axiom,
∙ V� ⊨ power set axiom.

PROOF
Let � be a limit ordinal. Take a, b ∈ V� . Then, there exists �1, �2 ∈ � such that
a ∈ V�1 and b ∈ V�2 . Without loss of generality, we can assume that �1 ⊆ �2,which implies that a ∈ V�2 by Lemma 7.5.14. Therefore, {a, b} ⊆ V�2 , so

{a, b} ∈ P(V�2 ) = V�+2 ⊆ V� .

Hence,
V� ⊨ ∀u∀v∃x∀w (w ∈ x↔ w = u ∨w = v).

The proof of the second part of the theorem is left to Exercise 26.
Certainly, the empty set will be an element of V� provided that � is not empty, so

the proof of the next theorem is left to Exercise 27. In addition, V� needs to contain !
to satisfy the infinity axiom.

THEOREM 7.5.22

If � is a nonempty ordinal, V� ⊨ empty set axiom.

THEOREM 7.5.23

If � is an ordinal such that ! ∈ �, then V� ⊨ infinity axiom.
PROOF

Since Lemma 7.5.15 implies that ! ∈ V!+ , by Lemma 7.5.14, we have that
V� ⊨ ∃x({ } ∈ x ∧ ∀u[u ∈ x→ ∃y(y ∈ x ∧ u ∈ y ∧ ∀v[v ∈ u→ v ∈ y])]).

Since ! ⋅ 2 = ! + ! is a limit ordinal greater than !, we conclude the following.
THEOREM 7.5.24

V!⋅2 ⊨ Z.
The ordinal !+! requires one of the replacement axioms (5.1.9) to prove its existence
(page 317). This means that the proof of the consistency of Z relies on axioms not in
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Z, so let us continue to examine the von Neumann hierarchy for a model of ZFC. It
will not be V!⋅2 because not all replacement axioms are true in V!⋅2. This is because
V!⋅2 does not satisfy Theorem 6.1.19. To use a stage of the von Neumann hierarchy to
serve as a model for ZFC, we need a strongly inaccessible cardinal (Definition 6.5.11),
which is the next theorem. We state it without proof.

THEOREM 7.5.25

V� ⊨ ZFC if and only if � is a strongly inaccessible cardinal.
However, the sentence

there exists a strongly inaccessible cardinal (7.35)

cannot be proved or disproved using ZFC. This means that (7.35) is independent of
the axioms of set theory. It also means that we are ready for the next definition. Do not
confuse it with the notion of a complete logic (Definition 7.4.8).

DEFINITION 7.5.26

An S-theory T is complete if T ⊢ p or T ⊢ ¬p for all S-sentences p, else T is
incomplete.

The definition means that ZFC is not complete. It turns out that the underlying issue
is that ZFC satisfies the Peano axioms (7.5.3). The ability to do basic arithmetic guar-
antees that there exists a sentence that is independent of ZFC. This result generalizes
to the incompleteness theorems due to Gödel (1931).

THEOREM 7.5.27 [Gödel’s First Incompleteness Theorem]

If the Peano axioms are provable from a consistent theory, the theory is incom-
plete.

Since ZFC is assumed to be consistent and it can be used to deduce the Peano axioms,
we conclude that ZFC is incomplete. Now suppose that instead of assuming the con-
sistency of ZFC, we try to prove that ZFC is consistent using its own axioms. Gödel’s
next theorem proves that we cannot do this, except under one condition.

THEOREM 7.5.28 [Gödel’s Second Incompleteness Theorem]

If a theory proves the Peano axioms and its own consistency, the theory is incon-
sistent.

Therefore, if ZFC could be used to prove (7.35), ZFC would prove that it has a model,
which would imply that ZFC is consistent by Henkin’s theorem (7.4.19). Since we
believe that ZFC is consistent, we conclude that ZFC cannot prove the existence of a
strongly inaccessible cardinal. If ZFC was extended with an axiom that would allow
such a proof, there would be another issue with the extension that would prevent it from
proving its own consistency, provided that the new theory was consistent.
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The statement of the first incompleteness theorem does not explicitly give a math-
ematical statement that cannot be proved. It was left to later mathematicians to find
some. For example, when combined with Gödel’s proof of the relative consistency of
CH, the proof of Paul Cohen (1963) of

Con(ZFC)→ Con(ZFC + ¬CH),

shows that both CH and its negation cannot be proved from ZFC. This means that the
continuum hypothesis is independent of ZFC. In general, to prove that a sentence p is
independent of a theory T , do two things.

∙ Find a model A such that A ⊨ T ∪ {p}. Then, T ̸⊨ ¬p by Definition 7.1.20.
This implies that T ⊬ ¬p by Corollary 7.4.23.

∙ Find another modelB such thatB ⊨ T ∪{¬p}. From this conclude that T ̸⊨ p,
which implies T ⊬ p.

Using this strategy, other statements have been discovered to be independent of ZFC.
Some of these are technical set theoretic statements such asMartin’s axiom (Martin and
Solovay 1970) or the diamond principle (Jensen 1972). There are independent state-
ments in other branches of mathematics as well. An example from group theory is the
independence of theWhitehead problem (Shelah 1974), named after the mathematician
John H. C. Whitehead (1950).
Exercises

1. Write an AR′-formula equivalent to the given English sentences.
(a) x is an even number.
(b) x is an odd number.
(c) x is a prime.
(d) x divides y.

2. Prove that the order of Definition 5.2.10 proves the given AR′-sentences.
(a) ∀x(¬ x < 0)
(b) ∀x∀y[x < Sy ↔ (x < y ∨ x = y)]
(c) ∀x∀y(x < y ∨ x = y ∨ y < x).

3. Prove that the given AR′-formulas can be proved from Axioms 7.5.3.
(a) ∀x(0 < x ∨ x = 0)
(b) ∀x[x = 0 ∨ ∃y(x = Sy)]
(c) ∀x∀y(x ⋅ y = 0→ x = 0 ∨ y = 0)
(d) ∀x∀y(x < y↔ Sx < Su)
(e) ∀x∀y(x < y ∨ x = y ∨ y < x)

4. Prove PA ⊨ (x+2) ⋅ (x+3) = (x ⋅x+5 ⋅x)+6, where 2, 3, 5, and 6 are understood
to mean the appropriate successors of 0.
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5. Find examples of the following if possible.
(a) An S-theory T such that every two finite models of T are isomorphic, but

there exists two models of T that are infinite and not isomorphic.
(b) An S-theory T such that every two countable models of T are isomorphic,

but there exists two models of T that are uncountable and not isomorphic.
6. Let T be an S-theory and p an S-sentence where T ⊢ p. Prove that there exists a
finite U ⊆ T such that U ⊢ p.
7. Let T be an S-theory and p an S-sentence such that T ⊨ p and p ⊨ T . Show that
there exists a finite subset U of T such that U ⊨ T .
8. Prove that the following are equivalent for an S-theory T .

∙ T is consistent.
∙ T has a model.
∙ T has a countable model.
∙ Every finite subset of T is consistent.
∙ Every finite subset of T has a model.
∙ Every finite subset of T has a countable model.

9. Finish the proof of Theorem 7.5.5.
10. Prove that the cancellation law holds for multiplication in Peano arithmetic. See
Exercise 7.5.7.
11. If possible, find an AR′-sentence p ∈ Th(P′) that is not a consequence of PA
(Exercise 7.4.6).
12. Demonstrate that there is no finite model of P or PA.
13. Prove that there exists a model of P that is not isomorphic to P.
14. Prove that there is a countable nonstandard model of Peano arithmetic.
15. The axioms for an ordered field are the ring axioms (7.1.36) plus the following
OF-sentences:

∙ ∀x∀y(x ⊗ y = y ⊗ x),
∙ ∃x∀y(x ⊗ y = y),
∙ ∀x[¬x = 0→ ∃y(x ⊗ y = 1)],
∙ ∀x∀y(x < y ∨ x = y ∨ y < x).

Find a model for these axioms.
16. Show that there exists a model of the axioms for an ordered field (Exercise 15)
such that ! is a subset of the domain of the model and there exists m in the domain so
that n < m for every natural number n. In addition, prove that there are infinitely many
such m. What does 1∕m look like?
17. Let ℜ = (ℝ, 0,+, ⋅, <) be a model of the axioms for an ordered field. Prove that
there is a countable model of Th(ℜ). What is the significance of this model?
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18. Expand OF to OF ∪ {E}, where E is a binary function symbol. Find a model of
the axioms for an ordered field including the following (OF ∪ {E})-sentences:

∙ ∀x(xE0 = S0)
∙ ∀x∀y(xE(Sy) = (xEy)x

19. Let T be a theory such that for every n ∈ !, there exists m ∈ ! such that m > n
and T has a model of power m. Prove that T has an infinite model.
20. This hierarchy is due to Zermelo. Let V0 be a set of atoms. For every ordinal �,
define V�+ = V� ∪P(V�), and if � is a limit ordinal, define V� = ⋃

�<� V� . Find V1 and
V2 assuming the given sets of atoms.

(a) V0 = ∅
(b) V0 = {a}
(c) V0 = {0, 1, 2, 3}

21. Prove Lemma 7.5.17.
22. Prove that V� is a set for every ordinal �.
23. Using Exercise 6.3.22, show that |V!+�| = i� for every ordinal �.
24. Let A be a set. Prove that TC(A) is a transitive set.
25. Prove the remaining parts of Theorem 7.5.20.
26. Let � be a limit ordinal. Prove that V� ⊨ ∀x∃y∀u(u ∈ y↔ ∀v[v ∈ u→ v ∈ x]).
27. Prove that V� ⊨ ∃x∀y¬(y ∈ x) if � ≠ ∅.
28. Let A be an S-structure. Prove that Th(A) is complete.
29. Let � be a cardinal and {T� : � ∈ �} be a chain of complete S-theories such that
for all  ∈ � ∈ � we have that T ⊆ T� . Show that⋃�∈� T� is complete.
30. Let S ⊆ T be S-theories. Prove or show false: If T is complete, then S is
complete.



APPENDIX

ALPHABETS

Greek Alphabet

Upper Lower Name
A � alpha
B � beta
Γ  gamma
Δ � delta
E � epsilon
Z � zeta
H � eta
Θ � theta
I � iota
K � kappa
Λ � lambda
M � mu

Upper Lower Name
N � nu
Ξ � xi
O o omicron
Π � pi
P � rho
Σ � sigma
T � tau
Υ � upsilon
Φ ' phi
X � chi
Ψ  psi
Ω ! omega
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English Alphabet in the Fraktur Font

Upper Lower Name
A a A
B b B
ℭ c C
D d D
E e E
F f F
G g G
ℌ h H
ℑ i I
J j J
K k K
L l L
M m M

Upper Lower Name
N n N
O o O
P p P
Q q Q
ℜ r R
S s S
T t T
U u U
V v V
W w W
X x X
Y y Y
ℨ z Z
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Abel, Niels, 342
Abelian group, 342
Absolute value, 116
Abstraction, 122
Addition, inference rule, 25
Addition, matrix, 355
Additive identity, 199, 412
Additive inverse, 199
Aleph, 313
Algebraic, 315
Alphabet, 5

first-order, 68
second-order, 73

And, 4
Antecedent, 4
Antichain, 183
Antisymmetric, 177
Arbitrary, 88
Argument form, 21
Assignment, 7
Associative, 34, 139, 199, 412
Assumption, 46
Asymmetric, 177
Atom, 3, 6
Automorphism, 380

Axiom scheme, 228
Axiom(s), 24

choice, 231, 235
empty set, 227
equality, 226
extensionality, 227
foundation, 234
Frege–Łukasiewicz, 24
group, 340
paring, 228
power set, 228
regularity, 234
replacement, 230
ring, 353
separation, 228
subset, 229
union, 228
Zermelo, 231

Axiomatizable, finitely, 409

Basis case, 258
Bernstein, Felix, 301
Beth, 316
Biconditional, 5
Biconditional proof, 107
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Bijection, 211
Binary, 68

function, 189
operation, 198
relation, 161

Binomial coefficient, 263
Binomial theorem, 263
Boole, George, 117
Bound

lower, 181
upper, 180

Bound occurrence, 77
Burali-Forti paradox, 297
Burali-Forti theorem, 292

Cancellation, 248, 256, 414
Candidate, 99
Cantor–Schröder–Bernstein theorem, 301
Cantor, Georg, 117, 226, 229, 303, 313
Cardinal, 307

large, 332
limit, 314
regular, 328
singular, 328
strongly inaccessible, 332
successor, 314
weakly inaccessible, 331

Cardinality, 308
Cartesian n-space, 131
Cartesian plane, 130
Cartesian product, 130
Cases, 112
Chain, 182

elementary, 394
of structures, 372

Characteristic function, 304
Choice axiom, 231, 235
Choice function, 231
Class, 420
Class (relation), 171
Closed, 198
Closed interval, 120
Closed under deductions, 409
Codomain, 190
Cofinal, 328
Cofinality, 328
Cohen, Paul, 424
Coincidence, 349
Combinatorics, 260
Common divisor, 140
Commutative, 34, 139, 199, 412
Commutative ring, 354
Compactness theorem, 52, 415
Comparable, 181
Compatible, 183

Complement, 128
Complete, 56, 398
Complete theory, 423
Completeness theorem, 61, 407

Gödel’s, 407
Completeness, real numbers, 275
Complex number, 281
Composite number, 107
Composition, 163, 195
Compound, 4, 6
Concatenation, 178
Conclusion, 22, 26
Conditional, 4
Conditional proof, 45
Congruent, 170
Conjunct, 4
Conjunction, 4
Conjunction, inference rule, 25
Connective, 6
Consequence, 22, 346, 352
Consequent, 4
Consistency, relative, 407
Consistent, 52, 395

maximally, 53, 396
Constant symbol, 68
Constructive dilemma, 25
Contingency, 16
Continuous, 94
Continuum hypothesis, 313

generalized, 314
Contradiction, 16
Contradiction, proof by, 47
Contrapositive, 32, 103
Contrapositive law, 34
Converse, 32
Coordinates, 130
Coordinatewise, 356
Copy, 214
Corollary, 20
Corresponding occurrences, 77
Countable, 310
Counterexample, 102
Cyclic group, 363, 365

De Morgan, Augustus, 117
De Morgan’s laws, 35, 137, 139
Decreasing, 184, 203
Dedekind cut, 276
Dedekind, Richard, 229, 276
Deduce, 26
Deduction, 20
Deduction theorem, 42
Deductive logic, 2
Dense, 257
Denumerable, 310
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Descartes, René, 117
Destructive dilemma, 25
Diagonalization, 303
Diamond principle, 424
Direct existential proof, 99
Direct proof, 45
Discrete, 310
Disjoint, 127, 155

pairwise, 155
Disjunct, 4
Disjunction, 4
Disjunctive normal form, 38
Disjunctive syllogism, 25
Distributive, 34, 139, 246, 323, 412

left, 320
Divides, 98
Divisible, 98
Division algorithm, 185

polynomial, 110
Division ring, 357
Divisor, 98

common, 140
zero, 356

Domain, 162, 334
Dominate, 300
Double negation, 35
Downward closed, 274
Downward Löwenheim–Skolem theorem, 415

Element, 117
Elementary chain, 394
Elementary equivalent, 387
Elementary extension, 389
Elementary substructure, 389
Embedding, 214
Empty set, 118, 141, 227
Empty set axiom, 227
Empty string, 6
Endpoint, 120
Equal, 118
Equality, 194
Equality axioms, 226
Equality symbol, 68
Equinumerous, 298
Equivalence class, 171
Equivalence relation, 169

induced, 175
Equivalence rule, 110
Equivalence, logical, 31, 348
Equivalent

elementary, 387
pairwise, 109

Euclid, 19, 107, 265
Euclid’s lemma, 265
Evaluation map, 193

Even integer, 98
Excluded middle, 37
Exclusive or, 11
Existence, 104
Existential formula, 72
Existential generalization, 91
Existential instantiation, 91
Existential proof, 99, 106
Existential proposition, 65
Existential quantifier, 65
Expansion, 352
Exponentiation, 249, 321, 322
Exportation, 35
Extension, 197, 361

elementary, 389
Extensionality axiom, 227

Factor, 98, 110
Factorial, 242
False, 3
Family of sets, 148
Fibonacci, 268
Fibonacci number, 269
Fibonacci sequence, 269

generalized, 273
Field, 357

ordered, 69, 425
Field theory, 69
Finite, 308

hereditarily, 417
Finitely axiomatizable, 409
First-order

alphabet, 68
formula, 73
language, 73
logic, 96

Formal proof, 26
Formation sequence, 7
Formula, 71, 72

first-order, 73
second-order, 73

Foundation axiom, 234
Fraenkel, Abraham, 229
Fraktur, 334, 428
Free occurrence, 77
Free variable, 78
Frege, Gottlob, 24, 117
Function, 189

bijection, 211
binary, 189
characteristic, 304
choice, 231
continuous, 94
decreasing, 203
embedding, 214
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evaluation, 193
greatest integer, 192
homomorphism, 375
identity, 191
inclusion, 203
increasing, 203
injection, 206
inverse, 204
invertible, 204
isomorphism, 382
one-to-one, 206
one-to-one correspondence, 211
onto, 208
order-preserving, 212
periodic, 203
projection, 210
real-valued, 193
surjection, 208
unary, 189
uniformly continuous, 94
zero, 376

Function equality, 194
Function notation, 190
Function symbol, 68
Fundamental homomorphism theorem, 383
Fundamental theorem of arithmetic, 271

Galois, Évariste, 342
General linear group, 345
Generalization, 85

existential, 91
universal, 88

Generalized continuum hypothesis, 314
Generalized Fibonacci sequence, 273
Generator, 363, 370
Gödel, Kurt, 399, 407, 414, 423
Gödel’s completeness theorem, 407
Gödel’s incompleteness theorems, 423
Golden ratio, 271
Grammar, 6
Greatest common divisor, 140
Greatest element, 180
Greatest integer function, 192
Greatest lower bound, 181
Grounded, 419
Group, 342

abelian, 342
cyclic, 363
general linear, 345
Klein-4, 344
simple, 363

Group axioms, 340
Group theory, 69
Grouping symbol, 6

Half-open interval, 120
Hartogs’ function, 327
Hartogs’ theorem, 293
Hausdorff maximal principle, 237
Henkin, Leon, 399
Henkin’s theorem, 406
Hereditarily finite sets, 417
Hereditary set, 235
Hierarchy, von Neumann, 417
Hilbert, David, 226, 408
Hilbert’s problems, 408
Homomorphism, 375

group, 375
ring, 375

Hypothetical syllogism, 25

Ideal, 368
improper, 368
left, 368
maximal, 374
prime, 374
principal, 370
principal left, 370
proper, 368
right, 368

Idempotent laws, 139
Identity, 162, 199

additive, 199
multiplicative, 199

Identity map, 191
Image, 190, 208, 216
Implication, 4
Improper ideal, 368
Improper subgroup, 363
Improper subring, 366
Improper subset, 136
Inaccessible cardinal, 331
Inclusion map, 203
Inclusive or, 11
Incomparable, 181
Incompatible, 183
Incomplete theory, 423
Incompleteness theorems, 423
Inconsistent, 52, 395
Increasing, 184, 203
Independent, 408
Index, 148
Index set, 148
Indexed, 149
Indirect existential proof, 106
Indirect proof, 47
Induced equivalence relation, 175
Induced partition, 174
Induction

mathematical, 257
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on formulas, 336
on propositional forms, 59
on terms, 335
strong, 268
transfinite, 283, 291

Induction hypothesis, 59, 258
Induction step, 258
Inductive logic, 1
Inductive set, 238
Infer, 24
Inference, 24
Inference rule, 25
Infinite, 308, 344
Infinity axiom, 227
Infinity symbol, 120
Initial number, 327
Initial segment, 274

proper, 274
Injection, 206
Instantiation, 85

existential, 91
universal, 87

Integers, 250
Integral domain, 356
International Congress of Mathematicians, 408
Interpretation, 335
Intersection, 126, 152
Interval, 120
Interval notation, 120
Introduction, 97
Invalid

semantically, 21
syntactically, 21

Inverse, 166, 199
additive, 199
function, 204
image, 216
left, 215
multiplicative, 199
right, 216

Inverse image, 216
Inverse relation, 166
Inverse statement, 37
Invertible function, 204
Invertible matrix, 345
Irrational number, 128, 276
Irreflexive, 177
Isomorphic, 212, 344, 380, 382
Isomorphism, 212, 380

group, 382
ring, 382

Kernel, 379
Klein-4 group, 344, 363
König, Julius, 301, 330

König’s theorem, 330
Kuratowski, Kazimierz, 130, 232, 237

Language, 73
first order, 73

Large cardinal, 332
Law of noncontradiction, 37
Law of the excluded middle, 37
Least element, 180
Least upper bound, 180
Left distributive, 320
Left ideal, 368
Left inverse, 215
Left zero divisor, 356
Leibniz, Gottfried, 117
Lemma, 20
Leonardo of Pisa, 268
Lexicographical order, 187
Liber abaci, 268
Limit cardinal, 314
Limit ordinal, 290
Lindenbaum’s theorem, 397
Linear combination, 186
Linear order, 182
Linearly ordered set, 182
Logic, 1

deductive, 2
first-order, 96
inductive, 1
mathematical, 2
propositional, 20
second-order, 96

Logic symbol, 67
Logical implication, 21
Logical system, 20
Logically equivalent, 31, 348
Löwenheim, Leopold, 415
Löwenheim’s theorem, 416
Löwenheim–Skolem theorem

downward, 415
upward, 416

Lower bound, 181
greatest, 181

Łukasiewicz, Jan, 24, 71

Mal’tsev, Anatolij, 414
Map, 190
Martin’s axiom, 424
Material equivalence, 13, 35
Material implication, 12, 35
Mathematical induction, 257

strong, 268
Mathematical logic, 2
Mathematics, 1
Mathesis universalis, 117
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Matrix, 345
identity, 345
invertible, 345
zero, 355

Matrix addition, 355
Matrix multiplication, 345
Maximal element, 181
Maximal ideal, 374
Maximally consistent, 53, 396
Meaning, 334
Metatheory, 96
Minimal element, 181
Mirimanoff, Dmitry, 229, 234
Model, 338, 339
Modern square of opposition, 86
Modulo, 170, 172
Modus ponens, 25
Modus tolens, 25
Multiple, 98
Multiplication, matrix, 345
Multiplicative identity, 199, 412
Multiplicative inverse, 176, 199
Mutually exclusive, 127

N-ary, 68, 161, 189
Name, 334
Natural number, 238
Necessary, 4, 109
Negated, 4
Negation, 4
Niece, 64, 161
Noncontradiction law, 37
Nonstandard model, 411
Norway, 342
Number, 256

standard, 411
Number theory, 69

Occurrence, 65
Odd integer, 98
One-to-one correspondence, 211
One-to-one function, 206
Onto function, 208
Open interval, 120
Operation, binary, 198

associative, 199
commutative, 199

Operation, set, 126
Or, 4

exclusive, 11
inclusive, 11

Order, 344
increasing, 184
lexicographical, 187
linear, 182

partial, 178
well, 183

Order isomorphism, 212
Order of connectives, 8, 9
Order of operations, 132
Order type, 212, 292
Order-preserving, 212
Ordered n-tuple, 131
Ordered field, 69, 425
Ordered pair, 130
Ordinal, 286

limit, 290
successor, 290

Ordinal number, 286

Pairing axiom, 228
Pairwise disjoint, 155
Pairwise equivalent, 109
Paragraph proof, 97
Parsing tree, 6
Partial order, 178
Partially ordered set, 178
Particular, 88
Partition, 173

induced, 174
Pascal’s identity, 263
Peano arithmetic, 69, 411
Peano axioms, 410
Peano, Giuseppe, 410
Periodic, 203
Permutation, 260
Pigeonhole principle, 309
Polynomial division algorithm, 110
Poset, 178
Positive form, 86
Postulate, 20
Power, 415
Power set, 151
Power set axiom, 228
Pre-image, 190
Predecessor, 237
Predicate, 64, 65
Prefix notation, 71
Premise, 22, 26
Prenex normal form, 96
Preserves, 212, 375
Prime ideal, 374
Prime number, 107
Prime power decomposition, 272
Principal ideal, 370

left, 370
Principal ideal domain, 372
Projection, 210
Proof methods

biconditional, 107
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biconditional, short rule, 108
cases, 112
conditional, 45
contradiction, 47
counterexample, 102
direct, 45
disjunctions, 111
equivalence rule, 110
existence, 104
existential, direct, 99
existential, indirect, 106
indirect, 47
reductio ad absurdum, 47
relative consistency, 407
uniqueness, 104
universal, 98

Proof, formal, 26
Proof, paragraph, 97
Proof, two-column, 27
Proper ideal, 368
Proper initial segment, 274
Proper subgroup, 364
Proper subring, 366
Proper subset, 136
Proposition, 3

compound, 4
universal, 66

Proposition alphabet, 5
Propositional form, 6
Propositional logic, 20
Propositional variable, 6
Prove, 26
Pure set, 235
Purely relational, 337

Quantifier, 65, 66
Quantifier negation, 86
Quantifier symbol, 68
Quotient, 110, 185
Quotient set, 172

Range, 162, 208
Rational numbers, 254
Ray, 120
Real number, 276
Real-valued function, 193
Recursion, 242

transfinite, 294
Recursive definition, 6, 242
Reduct, 352
Reductio ad absurdum, 47
Reflexive, 169
Regular cardinal, 328
Regularity axiom, 234
Relation, 161

antisymmetric, 177
asymmetric, 177
binary, 161
inverse, 166
irreflexive, 177
reflexive, 169
symmetric, 169
transitive, 169
unary, 161

Relation on, 161
Relation symbol, 68
Relative consistency, 407
Remainder, 110, 185
Replacement axiom, 230
Replacement rule, 34
Restriction, 197
Right ideal, 368
Right inverse, 216
Right zero divisor, 356
Ring, 354

commutative, 354
division, 357
field, 357
integral domain, 356
principal ideal domain, 372
skew field, 357
with unity, 354

Ring axioms, 353
Ring theory, 69
Roster, 118
Roster method, 118
Russell’s paradox, 225
Russell, Bertrand, 225

Satisfiable, 340, 352
Satisfy, 65, 338, 339
Scheme, axiom, 228
Schröder, Ernst, 301
Scope, 77
Second-order

alphabet, 73
formula, 73

Second-order logic, 96
Selector, 231
Self-evident, 24
Semantically invalid, 21
Semantically valid, 21, 22
Semantics, 21
Sentence, 83
Separation axioms, 228
Set, 117

hereditary, 235
Set difference, 127
Set operation, 126
Set theory, 68
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Short rule of biconditional proof, 108
Signature, 334
Simple group, 363
Simplification, 25
Simultaneous substitution, 81
Singleton, 118
Singular cardinal, 328
Skew field, 357
Skolem’s theorem, 416
Skolem, Thoralf, 229, 234, 415
Sound, 56, 57, 398
Soundness theorem, 57, 398
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Sufficient, 4, 109
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Tarski, Alfred, 336, 415
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Theory, 395
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Transcendental, 315
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Transfinite recursion, 294
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Transitive closure, 419
Transitive set, 239
Trichotomy, 183, 288

weak, 179
Trichotomy law, 183
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True, 3
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Union, 126, 151
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Unique, 104
Unique factorization theorem, 271
Unit, 357
Unity, 354
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Universal generalization, 88
Universal instantiation, 87
Universal proof, 98
Universal proposition, 66
Universal quantifier, 66
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Upper bound, 180

least, 180
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Vaught, Robert, 336
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